
DOCUMENT RESUME '

ED 089 74/ IR 000 459

AUTHOR Lukas, George; Feurzeig, Wallace
TITLE Technology for Analysis of Student Interactions With

Complex Programs. Final Report for Period January
1972-February 1973.

INSTITUTION Bolt, Beranek and Newman, Inc., Cambridge, Mass.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO BOLTBER-74-2625
PUB DATE Feb 73
NOTE 221p.

EDRS PRICE MF-$0.75 HC-$10.20 PLUS POSTAGE
DESCRIPTORS Algorithms; *College Students; Computer Assisted

Instruction; *Computer Programs; Computer Science;
*Computer Science Education; *Educational Diagnosis;
Higher Education; Man Machine Systems; Problem
Solving; Program Descriptions; Program Evaluation;
*Programing; Programing Languages

IDENTIFIERS *Dribble File; Heuristic Methods; LOGO

ABSTRACT
A description is provided of a computer system

designed to aid in the analysis of student programing work. The first
section of the report consists of an overview and user's guide. In
it,,,Ithe system input is described in terms of a "dribble file" which
records all student inputs generated; also an introduction is given
to the aids developed for monitoring and analyzing student programing
activities. The next section offers a detailed description of the
system, including full program documentation, while the final two
parts deal with the standard analysis packages developed to
facilitate applications and with examples of system use. Details are
provided on the mai'ner in which users can scan structures derived
from the "dribble files", choosing data of interest, fors of
presentation, and level of interpretation and moving across these
freely in time. General facilities for developing new analysis
procedures are described and a technical description of the system's
LOGO language is appended. (Author)

BOLT BERANEK .AND NEWMAN
CONSULTING DEVELOPMENT

BOLTBER-74-2625

TECHNOLOGY FOR ANALYSIS OF STUDENT
INTERACTIONS WITH COMPLEX PROGRAMS

,,. George Lukas
Wallace Feurzeig
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138+

-\

INC

RE SE ARCH

US DEPARTMENT OF HEALTH,
EDUCATION I. WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORCAN, Z A 1 ,ON ORIGIN
ATINO IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY NEPAL
SENT OFFICIAL NATIONAL INSTI TU TE OF
EDUCATION POSITION OR POLICy

February 1973

Final Report for Period January 1972 - February 1973

Prepared for

NATIONAL SCIENCE FOUNDATION
Education Directorate
Office of Experimental Projects and Programs
5225 Wisconsin Ave., N.W.
Washington, D. C. 20,,,

Contract NSF-C 708

CAMBRIDGE WASHINGTON, D.C. CHICAGO HOUSTON LOS ANGELES SAN FRANCISCO

BIBLIOGRAPHIC DATA
SHEET

1. Report No. --
3. Recipient's Accession No.

..---.

5.13eFort Date
February 1973

, 71731,1 Subtitle

Technology for Analysis of Student Interactions
With Complex Programs 6.

1. Atehoos)
George Lukas and Wallace Feurzeig 8. Performing Organization Re pt.

No. 2625
9. Performing Organization Name and Address

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138

10, Project /Task /Work Unit No.

11. Contract/Grant 'Lo.

NSF-C 708

12. Sponsoring Organization Name and Address

National Science Foundation
5225 W4sconsin Ave., N.W.
Washington, D. C. 20550

13 Type of Report & Period
Covered Final

Jan. 1972-Feb. 1973
14.

15. Supplementary Notes
.

/6. Abstracts A computer system to aid in the analysis of student programming
work is described. The input to this system is a "dribble file" record-
ing all student inputs generated during a student computer interaction.
The system provides teachers and researchers a set of aids for monitoring
and analyzing the student's programming activity. The user can design
the particular form of analysis he desires. During the analysis he can
scan structures derived from the dribble files_ dynamically, choosing data
of interest, form of presentation, and level of interpretation, and
moving across these freely in time. The design and implementation of
this analysis system are described. Its standard mode of use is
illustrated and special analysis packages are developed. General
facilities for developing new analysis procedures are described.
Examples show the application of these various capabilities.

17. Key Words and Document Analysis. 17a. Desctiptors

Computer Programming
Education
Psychology
Problem Solving
Heuristic Methods
Reasoning
Algorithms
Diagnostic Routines
Monitor Routines

.

17b. Identifiers /Open -Ended Tetms

17c. COSATI Field/Group 05 - 08 05 - 09 09 - 02
18. Availability Statemei t

Release unlimited

19. Security Class (This
Report)

UNCLASSIFIED

21. No. of Pages

30. Security Class (This
Page

-UNCLASSIFIED

22. Pace

FORM NT4S39 (10-701 USCOMM-OC 40324.1,1

Report No. 2625 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS
Page

ABSTRACT ii

INTRODUCTION iii

Part 1. User's Guide

1. Programming Languages in Teaching 1-1

2. An Example of Use of the LOGO Language 1-2

3. Dribble Files 1-8

4. Building a Language and Monitor System for Processing
Dribble Files 1-13

S. The Raw Dribble File 1-22

6. Preprocessing of the Raw Dribble File 1-2S

7. Parsing of the Dribble File 1-28
8. An Example of the Output of Parsing 1-35

9. RUNning the Dribble File 1-38

Part 2. System Documentation

1. Introduction to System Documentation 2-1

2. The Use of LOGO as Both System and Object Language . 2-2

3. The Preprocessing 2-4

4. Parsing . . . 2-7

S. Running 2-20

6. The Display Facility 2-35

Part 3. Analysis Package

1. Introduction to Analysis Package 3-1

2. User Definition of Analysis Procedures 3-1

3. User Augmentation of the Parsing Procedures 3-4

4. Aids for Execution and Debugging of Student Procedures 3-8

Part 4. Examples of System Use

1. Introduction 4-1

2. Example 1 4-2

3. Example 2 4-14

4. Example 3 4-30

S. Example 4 4-36

APPENDIX A

Report No. 2625 Bolt Beranek and Newman Inc.

STUDENT INTERACTIONS WITH COMPLEX PROGRAMS

ABSTRACT

The individualization in classroom work made possible by

student use of high level programming languages creates new

educational and technological challenges. Unless severe time or

usage constraints are imposed on their mode of work, the quantity

of information generated by the students is much too large for

either a teacher or researcher to handle effectively. The

computer itself, however, can be used to great advantage for

those forms of analysis of student programming work which do not

totally depend on problem content. "Dribble files" can be

generated containing all the student-computer interaction, and a

computer system developed to help teachers or researchers monitor

and analyze these dribble files.

A facility of this kind has been developed. It provides

suitable primitives and procedure-writing capabilities to enable

the user to design the exat form of analysis he desires. During

the analysis the user can scan forms derived from the dribble

files dynamically, choosing the data of interest, form of

presentation, and level of interpretation, and moving across

these freely in time.

The design and implementation of this analysis system are

described. Its standard mode of use is illustrated and special

analysis packages are developed. General facilities that permit

users to develop their own analysis procedures are described.

Examples are given to illustrate application of these various

capabilities.

ii

Report No. 2625 Bolt Beranek and Newman Inc.

INTRODUCTION

Programming languages provide contexts within which a great

variety of formal processes can be concretely represented and

performed. They permit a great scope for individuality of

student work both in the number of things students can do, as

well as the number of different ways they can do them. Thus, at

least in principle, it is .:easonable to expect such languages to

play an increasingly important role in teaching. This same

variety and individuality, however, gives rise to practical

problems. Although less direct supervision by the instructor is

required when students use a programming language, the amount of

student-generated material he must deal with is very much greater.

And the occasional help with "debugging" and extending programs

that the instructor must provide requires that he easily and

efficiently follow each student's current work.

In practice the instructor's involvement must be substan-

tially reducer! -- there are typically far too many students for

an instructor and lab assistants to handle in this way. This

situation can, we believe, be substantially improved. Our con-

tention is that the great manipulative power the computer provides

the students can also be made accessible to the instructor for

more efficiently monitoring and analyzing the students' work.

This report describes the design and development of a system

directed to this end.

Part 1 of the report is a user's guide and overview of the

system. Part 2 is a detailed description of the system including

full program documentation; Part S contains standard analysis

packages developed to facilitate applications; Part 4 contains

examples of system use. A technical description of the LOGO

language is appended.

iii

Report No. 2625 Bolt Beranek and Newman Inc.

Part 1.

User's Guide

1-0

Report No. 2625 Bolt Beranek and Newman Inc.,

1. Programming Languages in Teaching

Programming languages are coming into extensive use in under-

graduate instruction. In addition to languages such as FORTRAN,

JOSS, and APL, originally designed for scientific applications,

some, like BASIC and LOGO, were expressly designed for student

use. These languages can be employed in a number of different

ways, encompassing a great variety of teaching modes as well as

student uses. In some situations the computer is used primarily

for evaluating complex expressions; sometimes it is used for

parametric study of previously-defined models; sometimes for

exploring complex data structures; sometimes the student develops

his own programs in connection with specific course projects;

and sometimes the programming language is used as the conceptual

framework for developing some of the main ideas in the subject

taught. These forms serve to illustrate the diversity of

approach possible. A balanced design will combine several of

them in a single course or even in the study of a single topic.

Utilization of a computer and a programming language does

not, in itself, impose the need for new teaching strategies.

Practical problems develop only in those cases where students are

expected to carry out their own programming projects, whether or

not there is extensive guidance. Experience shows that, here,

great diversity and individuality in work arises and there is

considerable divergence among students even when they are

nominally working on the same problem. One consequence is that

student errors can lie much deeper and be correspondingly more

difficult to diagnose. Further, the teacher must understand the

implications of a large number of alternative approaches to the

solution of a given problem.

1-1

Report No. 2625 Bolt Beranek and Newman Inc.

A good teacher always faces these difficulties. But in the

teaching situations that develop from this way of using program-
ming languages, his difficulties are made particularly critical

by the amount of individual monitoring required. To examine

this problem more concretely, it is useful to sie the character-

istics of actual student programming work in somNdetail; we will

therefore study student work in part of a programtyg-oriented

sequence used in undergraduate instruction (at th e University of

Massachusetts in 1971). To provide a context, we first outline

the central ideas developed in the teaching guide associated

with this undergraduate sequence.

2. An Example of Use of the LOGO Language

A programming language has a central use in the teaching

discussed here. We illustrate this role next with a specific

example. We designed the following sequence, and others like it,

as models for guiding teachers. This particular sequence served

that role in an introductory course in undergraduate mathematics

given at the University of Massachusetts, Boston, in the spring

1971 term. fhe course was open only to students of low mathe-

matical ability. Thus, we chose mathematical material which,

at least on the surface, appeared nonmathematical.

In this sequence we trace the development of some programs

for making pictures, specifically geometric figures, on a tele-

typewriter. We use the LOGO programming language* for this

because we feel that crucial formal and heuristic issues are more

clearly exposed with LOGO than with other programming languages.

We begin by writing straightforward procedures for drawing

figures of fixed shape and size. The first such procedures are

A description of the LOGO language is given in Appendix A.

1-2

Report No. 2625 Bolt Beranek and Newman Inc.

pointillistic, each command typing out a single point of the

figure. This is a tedious and mathematically uninteresting

approach. A considerable improvement comes about from noting

that we can write a procedure for typing out the figure a whole

line at a time. This procedure is called MARK :N: :X: and is

written entirely in terms of LOGO primitives. Here is its

definition.

TO MARK :N: :X:
1 TEST IS :N: 0 (When there are no more :X:'s to
2 IFTRUE STOP type, stop.)
3 TYPE :X: (Otherwise, type out an :X:)
4 MARK (:N:-1) (And repeat the procedure :N:-1
END more times.)

For example:

MARK 1R u+u (We underline the student's typing)
+ + + + + + + + + + + + + + + + ++

We can write procedures using MARK to draw geometric figures

of many different kinds. We can easily generate figures with

vertical symmetry about some fixed line, by extending MARK to

handle the details of formatting. The procedure MIDDLE :N: :X:

neatly centers the row of :N: :X:'s in the middle of the line.

TO MIDDLE :N: :X:
1 MARK (QUOTIENT OF (60-:N:)

AND 2) :BLANK:
2 MARK :N: :X:

END

Thus:

MIDDLE 18 " +"

(Indent the appropriate number
of spaces:
(and then type out :N: :X:'s)

++++++++++++4.4.++++

1-3

Report No, 2625 Bolt Beranle and Newman Inc.

MIDDLE has direct and straightforward application for

writing procedures for drawing general clasE.es of simple symmetric

figures -- triangles, rectangles, and trapezoids of varied sizes

and shapes. For example, we write a procedure TRAPEZOID and use

it to make drawings such as the following.

TRAPEZOID 3 11 2 TRAPEZOID 13 S -2

+++++
+++++++

+++++++++
+++++++++++

+++++++++++++
+++++++++++
+++++++++
+++++++
+++++

We can use such procedures as the basis for further drawing

procedures. Here, for example, is a procedure for drawing

octagons, where :A: is the top base, :B: is the middle diameter,

and :STEP: is the step size.

TO OCTAGON A B. STEP:
1 TRAPEZOID :A: :B: :STEP:
2 RECTANGLE :B: (QUOTIENT OF (:B:-:A:)

AND :STEP:)
3 TRAPEZOID :B: :A: (-:STEP:)
END

A next level of procedures generates sequences of figures --

hexagons of increasing size, oscillating diamond patterns, and

the like. For example, we write a procedure PATTERN which uses

a random process to create a procedure for drawing patterns that

are symmetric about a horizontal line as well as a vertical one.

The following drawings were made by procedures generated by

PATTERN.

1-4

Report No. 2625 Bolt Beranek and Newman Inc.

+++
+++++

+++++++
+++++++++
+++++++++++

+++++++++++++++
+++++++++++++++++++

+++++++++++++++++++++++
+++++++++++++++++++++ +++++++++++++++++++++++++++

+++++++++++++++++++++++++ +++++++++++++++++++++++++++++++
+++++++++++++++++++++ +++++++++++++++++++++++++++

++++++++++++++++ +++++++++++++++++++++++
+++++++++++++ +++++++++++++++++++

+++++++++ +++++++++++.!+++
+++++ +++++++++++
+++ +++++++++

+++++ +++++++
+++++++ +++++

+++++++++ +++

Using the procedures written thus far, the student could

generate a large number of different geometric shapes, and the

writing of such a sequence of procedures represents a considerable

achievement on his part. The foundations of geometry, however,

lie in the transformation of geometric objects, not merely in

their portrayal. Our next goal, then, is to write procedures for

performing standard transformations of geometric figures, Such

transformations include translation, rotation, and reflection,

both with respect to a given point and with respect to a given

line. Procedures to generate the union and intersection of the

sets of points defining two geometric objects are also useful.

And, we need a procedure DRAW which plots any given set of points.

1-5

Report No. 2625 Bolt Beranek and Newman Inc.

To write these procedures we need a different representation

for geometric objects, one which can be retained within the com-

puter. (Clearly we do not have such a representation thus far --

our current objects are generated and drawn one line at a time.)

Perhaps the simplest such representation is a list of pairs of

numbers, each pair epresenting one point of the object. Then

it is easy to write procedures, such as the following, which

reflect a sot of points about the x-axis.

TO REFLECTX :PAIR LIST:

1 TEST IS :PAIR LIST: :EMPTY:
2 IFTRUE OUTPUT :EMPTY:

(:PAIR LIST: is the list of X Y
number pairs)
(Are there any points left on
:PAIR LIST:? If not, terminate
procedure)

3 OUTPUT LIST OF
FIRST OF :PAIR LIST:
NEGATIVE OF SECOND OF :PAIR LIST:
REFLECTX OF (BUTFIRST2 OF :PAIR LIST:)

(Otherwise, output a list of the
X coordinate and the negative ;)f
the Y coordinate of the first
number pair on :PAIR LIST:, and
REFLECTX applied to the pair list
obtained by deleting the first

END number pair on :PAIR LIST:)

Thus, for example:

PRINT REFLECTX OF "1 2 4 3 7 11 2 -1"
1 -2 4 -3 7 -11 2 1

Using this and two similar procedures, one for reflecting

about the 45 degree line through the origin, and the other for

reflecting about the Y-axis, we can now write a procedure for

random generation of figures having eightfold symmetry.

1-6

Report Na. 2625 Bolt Beranek and Newman Inc.

TO EIGHTFOLD :N: (:N: is the number of pairs on the
pair list that will be generated)

I MAKE "PAIR LIST" (Generate a random list of :N:
RANDOMLIST OF :N: pairs, :PAIR LIST:)

2 .MAKE "PAIR LIST" (Form the union of :PAIR LIST: and
UNION OF (:PAIR LIST:) AND the pair list formed by reflecting
(REFLECT45 OF :PAIR LIST:) it around the 45 degree line, and

make this the new :PAIR LIST:)
3 MAKE "PAIR LIST" (Form the union of the new list and

UNION OF (:PAIR LIST:) AND its reflection about the Y-axis)
(REFLECT? OF :PAIR LIST:)

4 MAKE "PAIR LIST" (Do the same with the resulting list
UNION OF (:PAIR LIST:) AND and its reflection about the X-axis)
(REFLECTX OF :PAIR LIST:)

5 DRAW ORDER OF :PAIR LIST: "+" (Put the resulting pair list in
lexicographic order and plot it
using +ts)

END

++
++

4+

EIGHTFOLD generates random drawings such as the following.

+ +

+++

Using such basic transformation procedures we can study

general Euclidean transformations. For example, we can develop

methods for determining whether two randomly oriented polygons are

congruent. Proceeding in this fashion we steadily progress from

pre-mathematics to material of genuine mathematical content.

1-7

Report No. 2625 Bolt Beranek and Newman Inc.

3. Dribble Files

What we just sketched was an "ideal" teaching sequence. Let

us look next at what students actually did. We will not look at

the entire development of a sequence of drawing programs, only ate

the form and organization of some nearly final versions derived

from student interactions. Even in this condensed form, very

specific information about individual student work, of interest

for both research and teaching, is obtained.

We begin by looking at examples of real student interactions

in raw form, obtained from "dribble files" generated by the

student and recorded by the computer while he works. We then

consider more generally the work that students did to see what

conceptual and pedagogic issues arise in the course of that work.

The computer can present the student's work to the instructor

in various ways. One important mode of presentation is periodic

listings of the student's own program files. The student gener-

ally updateshis program files each working session and these

files contain nearly all the programs he writes. The instructor

needs to know, however, not only the programs generated by the

student but also how these were written, debugged, edited, and

used.

One way of giving him this information is through hard-copy

transcripts of the student's entire interaction with the computer.

These can be obtained simply by using two-copy paper in the tele-

typewriter. All the required information is acquired naturally

and inexpensively in this way.

1 -8

Report No. 2625 Bolt Beranek and Newman Inc.

Unfortunately, the information thus obtained is not in a

form that can easily be used. To make this information available

for co'mputer retrieval and processing, we need to store it as it
is produced. Such stored files of the student's entire dialogue

With the computer, generated as he works, are called "dribble
files". These files contain all the student's typed inputs, not

just the programs and data that he himself chooses to store.

Each typed input is given a "time stamp" -- i.e., we record

with the input line the total elapsed time from the entry of the

previous line to the entry of the current line. Thus, we can do

latency analyses as well as other processing involving considera-
tions of time. We have extended the LOGO language processor to

enable creation of dribble files as a by-product of student work.

In these dribble files, we store the student's type-ins but not

the associated computer responses. (The responses can easily be

regenerated later.)

In the next pages, we shall discuss the content and the uses

of such dribble file information. Dribble files of student

programming generated in introductory mathematics course work

at the University of Massachusetts will serve to illustrate the

discussion. The following example shows the listing of a fragment

of a dribble file made from the work of RC, one of the students.

The file is identified on the top line: RC.DRB;2 along with the

date and time it was generated. We have prefixed the lines with

reference numbers 0 through 17. Each line starts off with the

time stamp. Thus, in line 0 the number 0:00:10 means 0 hours

00 minutes and 10 seconds of time required to complete this line.

The material concerns the development of a procedure for

drawing triangles. Lines 0 and I direct the definitions of the

1-9

Report No. 2625 Bolt Beranek and Newman Inc.

procedures NUM and TRIANGLE to be listed. The resulting printouts

are shown on the right. The TRIANGLE procedure is edited several

times during this session: in lines 2, 3, and 4; later in lines

6, 7, 8, and 9; and once again in lines 12, 13, and 14. In

between these successive editing modifications. the effect of the

changes made in TRIANGLE is tested by executing the procedure NUM
with the input 8. This is done in line 5, then in line 11, and

finally in line 15. The computer printouts from the executions -

the various drawings - are shown on the right. At the end of

this exchange (line 16), the final version of TRIANGLE (which

still has a "bug" in its stopping rule) is listed. In line 17

NUM and TRIANGLE are stored in their current forms in a file

labeled "JOHN CAD".

DRIBBLE FILE LINE

RC.DRB;2 THU 29-APR-71 12;40PM

0 0:00:10 LIST NUM

1 0:00:11 LIST TRIANGLE

EFFECT AS EXECUTED

TO NUM :N:
10 MAKE "NU" 1

20 TRIANGLE :N:
END

TO TRIANGLE :N:
10 MARK "X" :NU:
20 PRINT :EMPTY:
30 TEST IS :NU: :N:
40 IFTRUE STOP
50 MAKE "NU" SUM OF :NU: AND 1

60 TRIANGLE :N:
END

2 0:00:10 EDIT TRIANGLE
3 0:00:43 10 MIDDLE 50 "X" :NU:
4 0:00:05 END
5 0:00:09 NUM 8 X

XX
XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

1 -1a

Report No. 2625

6 0:01:05 EDIT TRIANGLE
7 0'00:26 50 MAKE "NU" SUM :NU: 2

8 0:00:25 30 TEST IS SUM :NU: :N:

9 0:00:03 END
10 0:00:09 NUM88
11 0:00:07 NUM 8

Bolt Beranek and Newman Inc.

NUM8 NEEDS A MEANING
X

SOMETHING MISSING. IS NEEDS
ANOTHER INPUT. I WAS AT LINE 30
IN TRIANGLE

12 0:02:49 EDIT TRIANGLE
13 0:00:17 30 TEST IS SUM :NU: 2 :N:
14 0:00:02 END
15 0:00:06 NUM 8 X

XXX
XXXXX

XXXXXXX
XXXXXXXXX
XXXXXXXXXXX

WHEN YOU STOPPED ME I WAS AT
LINE 50 IN TRIANGLE

16 0:00:38 LIST TRIANGLE TO TRIANGLE :N:
10 MIDDLE 50 "X" :NU:
20 PRINT :EMPTY:
30 TEST IS SUM :NU: 2 :N:
40 IFTRUE STOP
50 MAKE "NU" SUM :NU: 2

60 TRIANGLE :N:
END

17 0:01:00 SAVE JOHN CAD

We could have illustrated the use of dribble files with more

complex and technical examples such as from a sequence on formal

differentiation in calculus. Instead, we have chosen to work

with material derived from actual classroom teaching. As is

evident from the above examples, the underlying issues of program

form and organizati)n arise even with relatively simple under-

graduate material. Moreover, they do not essentially depend upon

the programming language used.

Report No. 2625 Bolt Beranek and Newman Inc.

If another programming language such as BASIC had been used

instead of LOGO, the same organizational concepts would have

appeared, though in somewhat different form. To illustrate, we

include a triangle-drawing program written in BASIC. Though this

program superficially appears quite different from the correspond-

ing set of LOGO procedures, the two forms are very close. The

process again falls into three parts -- the main part draws the

triangle iteratively, one line at a time; this part calls a sub-

routine which, like MIDDLE, draws a centered line; and this sub-

routine itself twice calls another subroutine which, like MARK,

types a row of characters. Within each part, of course, there are

formal differences from the corresponding LOGO procedures.

Iteration is performed here using FOR statements rather than by

simple recursion, and all variable names have to be treated as

global. The use of the program is shown following the program

listing.

10 INPUT A$
20 INPUT L

(Corresponds to TRIANGLE
using character A$ and having
L rows)

30 FOR K=1 TO 2*L+1 STEP 2

40 GOSUB 9000
SO NEXT K
60 GO TO 9999

(Corresponds to MIDDLE,
centers K markings of A$)

9000 LET C$=" "
9010 LET N=25 -K/2 Marks 25 -K/2 blank spaces
9020 GOSUB 9100
9030 LET C$=A$
9040 LET N=K Marks A$, K times
9050 GOSUB 9100
9060 PRINT (Goes to the next line)
9070 RETURN

1-12

Report No. 2625 Bolt Beranek and Newman Inc.

9100 FOR J=1 TO N
9110 PRINT C$;
9120 NEXT J
9130 RETURN

9999 END

READY
RUNNH

?*
?W

(Corresponds to MARK, types
C$, N times)

4. Building a Language and Monitor System for
Processing Dribble Files

The "dribble file" we have described contains all details of

the student-computer interaction as it occurs at the teletype-

writer. By replaying a dribble file, we can even get all the

information at the systems level. Thus, the dribble file certain-

ly contains all the raw data available for analysis. The very

completeness and bulk of the information in the dribble file,

however, discourage us from doing any searching and processing

directly. We could have collected the data selectively to reduce

the size of the file but preselection of the data to be preserved

can turn out badly. Furthermore, any preselection rules can be

applied to the dribble file itself which can then be saved as a

backup. With this strategy, if it turns out in light of

1-13

Report No. 2625 Bolt Beranek and Newman Inc.

consequent results that a poor choice has been made, a new

"preselection" can bo done on the dribble file. This is our

rationale for saving all the data.

Since it is inefficient to use dribble files directly, we

must ask what aids exist or can be devised to make their use

manageable. The most rudimentary such aid is a text-editing

language, such as TECO, as implemented on the PDP-10 computer

system. Direct character -by- character matching is made very easy
by such a language. Thus, for example, one could delete all time

marks in a given file or all directly executed input lines. One

could also delete all lines followed by an error message, if one

can specify the format of an error diagnostic statement. These

actions are all the results of simple format matching. Also, it

is easy for a user to insert comments into a dribble file using
TECO. If, in addition, one can combine series of the basic

searching, inserting, deleting, and pointer-moving commands, with

numeric and branching capabilities, there is the possibility of

extremely sophisticated types of processing. In fact, the

"Q-registers" that TECO provides for storing stacks make the

language perfectly general and permit Turing-machine-like

programs to be written for all computable functions. One could,

for example, with some effort write a program using TECO to find

and enumerate all simple recursive programs in a dribble file.

Unfortunately, in a practical sense this is about as far as

one can go with TECO. First, one is writing programs in what is

essentially machine-language, a rather tedious undertaking.' Also,

it is difficult to write programs that are easily extensible.

Thus, two requirements that a dribble file analysis language

must satisfy are already apparent. The language itself must be

1-14

Report No. 2625 Bolt Beranek and Newman Inc.

natural in form to accommodate the unsophisticated user, and

user-written procedures must be transparent to permit their use

in further procedures. It is clear that such a language should

sppropriately incorporate the text-handling and editihg features
which are already in common use. By making the language self-

extensible, so that sets of programs of any depth can easily be

written, we satisfy the requirement of transparency. Also, it is
much easier to write general programs in a self-extensible

language. For example, instead of writing a TECO program which

looks in the dribble file for an object of some given form, one

can, with about the same effort, write a program in such a

language, one of whose inputs specifies the form to be found.

Also, a SNOBOL-like set of matching procedures could be written

in the file analysis language itself instead of being given as

part of the set of primitives.

Let us discuss the use of the analysis language next. Often

a teacher wishes to classify the programs written by his student

in a way he specifies. It would clearly be very inefficient to

have to perform this analysis on the same programs each time he

looked at the dribble files. The standard result of an analysis

of a dribble file should therefore be a new file containing the

processed data, with tags joining it to the original file at

points of correspondence. This means that the user can look

through the processed file using his own set of descriptors and

can go back to the raw data whenever necessary.

The idea of being able to operate upon the file at multiple

levels of detail is of very general use. In analyzing the work

of a student through his dribble files, there are several levels

which may be of nearly simultaneous interest. For the top level,

a good mode of presentation might be a flow chart, dynamically

1-15

Report No. 2625 Bolt Beranek and Newman Inc.

changing as the user scans the student's work, indicating all the

programs in the student's workspace and showing the changing

connections between them. At a lower level one might have a

complete specification of all the student's programs at that
moment in time. At the lowest level, one would probably want a

"cleaned up" version of the dribble file with (what the user

considers) the obscuring features deleted. The analysis of the

dribble file would begin at the top level. When programs of

particular interest appeared, they might be listed or executed.

Still further, the details of their creation end use by the

student might be explored at the lowest level.

Thus, we see the need for a set of programs enabling the

user to switch back and forth between levels, zooming in when he

needs more information, allowing him to vary his scanning rates,

to go back and forth between current and previous material, to

switch from scanning to execution mode, and so on. Let us

consider next some kinds of information that will be of interest.

Apart from considerations specific to the content being

studied, the user probably will be interested in general questions

regarding the formal structure and organization of the student's

work. Examples are: (1) What kinds of programs were used, i.e.,

what standard functions did the programs have (such as initiali-

zation, testing, and computation)? (2) What elementary program

forms were used (loop-free sequence, iteration, simple recursion,

etc.)? (3) What was the program organization, i.e., how were

the various programs combined (program tree, substructure type,

recursion diagram)? Thus, we can characterize the functional,

formal, and organizational features of the work or particular

students.

1-16

Report No. 2625 Bolt Boranek and Newman Inc.

For example, it is useful to follow the evolution and mastery

of a given program form in the work of an individual student.

One student, RC, early in the term was confronted by the need for

a procedure to find the integral half of a number. Her algorithm

consisted of successively adding 1 to a trial "half" and testing

to see whether its double was within 1 of the original number.

Having, after considerable effort, written the recursive procedure

FIND to do this, she then saw the need for another program to do

the initialization and wrote HALF. Annotated listing of both

Programs are given following. They fall neatly into distinct

parts as labeled. The algorithm itself is, perhaps, not one that

a more sophisticated programmer would use. Also in many places

RC is more obscure than is necessary. Real student programs are

like this however.

TO HALF :N:

Initialize 10 MAKE "TRIAL" 0

Call Simply- 20 OUTPUT FIND OF :N:
Recursive
Procedure

End-Test

Increment

Recursion

END

TO FIND :N:

10 TEST GREATERP OF 2
AND DIFFERENCE OF
(:N :) (PRODUCT 2 :TRIAL:)

20 IFTRUE OUTPUT :TRIAL:

30 MAKE "TRIAL"
(SUM OF :TRIAL: AND 1)

40 OUTPUT FIND OF :N:
END

1-17

(:N: is the number
to be halved)
(Set the "trial"
value of half to 0)
(Output the result
of FIND as the
answer)

(Is 2*:TRIAL:
within 1 of :N:)

(If so, :TRIAL: is
the answer
(Otherwise, add 1
to :TRIALO
(and repeat FIND)

Report No. 2625 Bolt Btranek and Newman Inc.

About a week later the same student wrote a pair of programs

to automatically draw triangles. We showed the dribble file for

the last part of this development in Section 3. The form of

these programs is nearly identical to the ones for halving. The

only change is that each step of the recursive procedure TRIANGLE

results in an action and this was not true for FIND. This task,

however, only took about half the time required for the earlier

'one. Along with this, the problem was approached much more

directly, as is evident from looking at the dribble file.

Clearly, this program form was being internalized.

TO NUM :N:

Initialize 10 MAKE "NU" 1

Call Simply- 20 TRIANGLE :N:
Recursive
Procedure

Action

END

TO TRIANGLE :N:

10 MIDDLE SO "X" :NU:

20 PRINT :EMPTY:
End-Test 30 TEST IS (SUM OP

:NU: 2) (:N:)
40 IFTRUE STOP

Increment SO MAKE "NU"
(SUM OF :NU: 2)

Recursion 60 TRIANGLE :N:

END

(:N: is the number
of X's in the bottom
row of the triangle)
(Make the number of
X's in the current
row 1)
(Draw the triangle)

(Mark the current
row)
(Start the next row)
(Is this the last
row?)
(If so, done)
(Otherwise, get
number of marks in
current row)
(and repeat
TRIANGLE)

This example forms a small part of RC's work on the geometric

figure drawing sequence. In all, she used three different program

1-18

Report No. 2625 Bolt Beranek and Newman Inc.

forms: the one which we have just discussed which we will call

form II; simple recursion which we label form I; and form 0 which

is a linear sequence of steps. The diagram in Figure 1 shows all
the connections between the various parts of the drawing sequence.

The program forms are indicated in parentheses after each
procedure name. (A more complete "flow chart" would show the

conditions for recursion and termination of each procedure of
form I or II. This information has been omitted, however, for

the sake of clarity and conciseness.)

Another student was working on programs for drawing geometric
figures during the same period. The diagram associated with the

work of this student, AF, is shown in Figure 2. Great differences

in program organization in the two cases are apparent, even though

the set of programs have the same final effect.

These examples show some of the issues involved in analyzing

complex student interactions. These students spent about three

weeks near the beginning of the term writing these programs.

Thus it is apparent that complex structures can be generated

quickly, even by "beginners". We need to consider next how such

structures are retrieved from dribble files.

1-19

Report No. 2625

FIND

HALF

N
MIDDLE (I)

MARK (I)

SU,''ERMARK (0)

Bolt Beranek and Newman Inc.

UPD (I)
("upside-down"
triangle)

Y/

DIAMOND (0)

TRIANGLE

NUM

(II)

GLIRP (I)
(The student's name for a
series of diamonds and
rectangles)

RECTANGLE (I)
(rectangle start-
ing at left margin)

STRIPE (1)
(rectangular
strips)

RECTAN',;'.E (I)
(rectangle
centered on
page)

Figure 1. Diagram of RC's Drawing Program

1-20

Report No. 2625 Bolt Beranek and Newman Inc.

RECTANGLE (I)

(rectangle with
specified start-
ing margin)

SIM-RECTANGLE (0)
(centered
rectangle)

MARK (1)

\If

SUPERMARK (0)

V
MIDDLE (0)

TRIANGLE (I)

CONE (I)

1

("upside-down"
triangle)

t-
DIAMOND (0)

(This really draws
a hexagon) .

SIMPLE - DIAMOND (0)
(This one draws a
diamond)

SAW (I)
(series of
diamonds)

SUPERSAW (0)
(fixed series of diamonds
and rectangles)

Figure 2. Diagram of AF's Drawing Programs

1-21

Report No. 2625 Bolt Beranek and Newman Inc.

5. The Raw Dribble File

In this section we begin a detailed discussion of the

processing of dribble files by first describing their structure.

A dribble file is simply the very slightly altered input stream

produced in the course of a single LOGO session. This input

stream is generated both by teletype inputs as well as retrievals

of previously SAVEd LOGO files. When a version of LOGO containing

the dribble file generator is entered, the user is asked for

identification -- INITIALS PLEASE. Entering the initials NMI

aborts the dribble file generation process. Any other input is

acceptable and is used as the name of the dribble file which is

subsequently generated. (In our initial use of dribble files in

teaching in spring, 1971, each student followed his initials with

a digit to enable more than one file to be created under his

initials on any given day. To avoid the overwriting and clobber-

ing of previous files of the same student, automatic numbering

was later implemented.)

A sample segment of a dribble file is given in Table 1.

This file was created during a student working session. Associ-

ated with the file is a header which gives the date and time the

file was created as well as the identifier entered by the student.

The input stream following has been augmented by time marks at

the beginning of each line; these give the elapsed time'since

initiation of the previous line. These time marks and the

heading are the only modifications provided to the raw input.

Two aspeCts of dribble files can easily be noted by

inspection of Table 1. First, the special time mark 24:00:00

precedes lines which were retrieved from storage, as opposed to

1-22

Report No. 2625 Bolt Beranek and Newman Inc.

24:00:00
24:00:00 TO FIND :N:
24:00:00 30 TEST Gr!EATELP "2" DIFFERENCE DIFFERENCE :N: :TRIAL: :TRIAL:
24:00:00 4(1 IF1RUE OUTPUT :TRIAL:
24:00:00 50 MAKE "TRIAL" SUM :TRIAL: "1"
24:00:00 60 OUTPUT FIND IN:
24:00:00 END
24:00:00
24:00:C0 TO HALF :N:
24:00:00 10 MANE "TRIAL" "0"
24:00:00 20 OUTPUT FIND :N:
24:00:00 END
24:00:00
24:00:00 TO DELETE :CHAR: :N:
24:00:00 10 TEST IS DIFFERENCE :N: "1" "0"
24:00:00 20 IF1RUE OUTPUT BUTFIRST :CHAR:
24:00:00 30 OUTPUT DELETE BUTFIRST :CHAR: DIFFERENCE :N: "1"
24:00:00 END
24:00:00
24:00:00 TO STRIPE *Me eN' 'Ye eSe
24:00:0(' 1 SUBRECTANGLE :M: :N: :Y:

All of the lines with
24:00:00 time marks were
retrieved sequentially
from a LOGO file previous-24:00:00 20 SUE3RECTANGLE :M: :N: SUM :Y: "1"
ly saved by the student.24:00:00 30 TEST IS SUM :Y: "1" :S:
Their effect is to load24:00:00 40 IFT1WE STOP

24:00:00 50 STRIPE :M: :N: SUM :Y: "1" :S: the LOGO procedures FIND,
HALF, DELETE, STRIPE, and24:00:00 END
MIDDLE into the workspace.24:00:00

24:00:00 TO MIDDLE :N: :X:
24:00:00 10 MARK "0" DIFFERENCE HALF :N: HALF COUNT :X:
24:00:00 20 TYPE :X:
24:00:00 END
24:00:00
24:00:00 MAKEI1 IT
24:00:00
0 :00:1(3 TO TRIANGLE :N:
0:00:17 TRIANGLE 3
0:01:13 EDIT TRIANGLE
0:00:18 10 MARK "X" 1

0:00:33 40 MARK "X" SUM "X" 1

0:00:07 END
0:00:15 'II:TANGLE 3
0:00:25 LIST TRIANGLE
0:01:33 EDIT TRIANGLE
0:00:20 20 T IS SUM 1 1 :N:

0:00:25 4') MARK "X" SUM 1 1

0:00:10 END
0:00:11 TRIANGLE 3
0:00:57 LISI Ti: !ANGLE
0:03:20 LIST SUbl:E10:00:16 LIST SUBRECTANGLE
0:00:25 LISI SUPEkMAi%K

The remaining lines are student inputs
to LOGO. The student is clearly
involved in running, debugging, and
editing a LOGO procedure, TRIANGLE.

TABLE 1. A "Raw" Dribble File Segment

1-23

Report No. 2625 Bolt Beranek and Newman Inc.

those lines directly typed in. (Distinguishing between lines

which were typed in from those which were retrieved is useful to

the dribble file analyzer. More about this later on.)

The other thing that should be noted is the appearance of

occasional time marks in the middle of lines. This occurs when

an input line has been terminated with a RUBOUT, rather than an

EOL character, meaning that the user has aborted the input of

that line. The next line of input is then continued on the same

line since no EOL*appears in the dribble file.

A student session usually commences with a GET command, with

which the student retrieves his work at the point he left off.

The partial example, given as Table 1, represents about one fourth

the length of a typical session involving beginning users. As the

student progresses, his dribble files reach lengths of 10 pages or

more for a 90 minute session. Our choice of recording only the

input stream (instead of both input and output) arose largely

from the great amounts of data generated in such sessions. We

retain the minimum amount of information required t(completely

reconstruct the student work at any point. Inclusion of the out-

put stream would make the dribble file more readable, but would

not be at all useful in such reconstruction. Such inclusion

would much more than double the amount of information recorded,

would lead to minor technical problems in mixing streams, and

would require more CPU time in its generation.

*

The end-of-line character.

1-24

Report No. 2625 Bolt Beranek and Newman Inc.

6. Preprocessing of the Raw Dribble File

The raw dribble file contains a good deal of information

which is of marginal interest for most analysis and which there-

fore can be eliminated. Character-by-character editing in the

student's work, for example, is of no general interest other than

in statistical studies--the student has instantly corrected his

typing errors without requiring feedback. Also, the raw dribble

file has to be massaged to put it into a pattern transformable

to LOGO data types. Preprocessing encompasses these two activities.

It is implemented in the TECO text editing language, the actual

programs being given in PArt 2.

Cleaning up of the files involves chiefly elimination of

explicit line editing and spurious characters such as illegal

control characters. Also, the various nonspace separators are

spaced out for easy decomposition later on. Empty dribble file

lines are rcmoved. Multiple spaces are eliminated automatically

later on, so these are ignored.

In order to be useable within LOGO, the successive lines of

the dribble file are assigned as values of variables created by

the preprocessing. At this level we must generate the actual

assignment statements for subsequent execution. The statements

have the form

MAKE fT var name +T +T var value +T,

where fT delimits both the variable name and the variable value.

These control T's are converted to quotes in subsequent process-

ing.) When these assignment statements are read into a LOGO

workspace with a GET command, they are executed and the bindings

actually made. The variable names are created in the form

"(n) N" where (n) runs sequentially from 1 by an increment of 1,

1-25

Report No. 2625 Bolt Beranek and Newman Inc.

providing an ordering for the dribble file lines, and N is a

literal denoting name. The value of each such variable is the

actual content of the associated dribble file line. If the line

is one retrieved from a pre-existing LOGO file (with time mark

24:00:00), an additional assignment statement is generated of the

form,

MAKE, +T (n) A +T tT STORED +T.

Use of this set of auxiliary variables will be discussed in the

next section.

To use the preprocessing program, the user enters TECO and

types ;Y LOADER.TECd IiXA4) MA') . This sequence of steps loads the

loading macro and initiates its execution. The program asks the

user for the name of the input file -- the one to be preprocessed

and the name of the output file, in which the result is to be

stored. Since, for our purposes, no useful information is

destroyed during preprocessing, as a general practice we overwrite

the output onto the input file. In Table 2 we give the preprocessed

form of a roughly corresponding segment of the raw dribble

material shown in Table 1. The first line of Table 2 is the

beginning of the stored procedure DELETE. The last lines of the

two tables correspond.

1-26

Report No. 2625 Bolt Beranek and Newman Inc.

MAKE tT43 AtT tTSTOREDtT
MAKE 1T43 N'T tTT0 DELETE i CHAR 1 i N ttT
MAKE tT44 AtT tTSTOREDtT
MAKE tT44 NT 9110 TEST IS DIFFERENCE 1 N 1 " 1 " " 0 "IT
MAKE tT45 At? tTSTOREDtT
MAKE 9145 N'T tT20 IFTRUE OUTPUT BUTFXRST : CHAR 19T
MAKE tT46 AtT tTSTOREDtT
MAKE 1T46 NIT 'T30 OUTPUT DELETE BUTFIRST 1 CHARIDIFFERENCEINI

e$1 "IT
MAKE 1T47 AtT t'ISToREDtT
MAKE $147 NIT tTENDtT
MAKE tT48 Atilt tTSTOREDtT
MAKE tT48 Nt? 'TTO STRIPEIMISN11X11$ ItT
MAKE $149 AfT tTSTOREDtT
MAKE tT49 NIT tT1 SUBRECTANGLEIM110.11X1IT
MAKE tT50 AtT tTSTOREDtT
MAKE tT50 NIT tT20 SUBRECTANGLE1M18N8SUM1Y1"1"tT
MAKE 9151 A'T tTSTOREDtT
MAKE tT51 NIT tT30 TEST IS SUM sYs "1"151,T
HAKE tT52 tTSTOREDtT
MAKE 1T52 NIT fT40 IFTRUE STOPIT
MAKE tT53 AtT tTSTOREDtT
MAKE tT53.Nt? tT50 STRIPEiml:NISUM 8Y1"1" :SI!?
MAKE tT54 AtT tTSTOREDtT
MAKE tT54 NIT tTENDtT
MAKE 1T55 AtT tTSTOREDtT
HAKE tT55 NIT tTTO MIDDLEIN18X1IT
MAKE tT56 AtT ITsToREDtT
MAKE 9156 NIT tT10 MARK " " DIFFERENCE HALF t U I HALT COUNT 1 X ItT
MAKE tT57 A'? tTSTOREDtT
MAKE tT57 NIT tT20 TYPE i X :IT
MAKE 9158 AtT tTSTOREDtT
MAKE tT58 NIT tTENDtT
MAKE 'T59 At: tTSTOREDtT
MAKE 1T59 NIT tTMAKEIT
MAKE tT60 NIT tTTO TRIANGLE : N ItT
MAKE 'T61 HIT 9TTRIANLE 3.?
MAKE tT62 NIT 'TEDXT TRIANGLEtT
MAKE 9163 NtT tT10 MARK " X w lIT
HAKE tT64 N'T 'T40 MARK " X " SUM " X " 1!T
HAKE 9166 NIT tTENDtT
HAKE tT66 NIT tTTP/ANGLE 3t?
MAKE 1167 NIT tTLIsT TRIANGLEtT
MAKE 1168 NIT tTEDIT TRIANGLEtT
MAKE 1169 NIT tT20 T IS SUM 1 1 S R It?
MAKE IT70 NtT ,T40 MARK " X " SUM i 11T
MAKE 1171 N'T tTENDtT
MAKE t172 N'T ,TTRIANGLE 3.?
MAKE 9173 NIT tTLIsT TRIANGLE'?
HAKE 1174 NIT tTLIST SUBRECTP.NGLE$T
HAKE 9175 NIT tTLIsT SUPERMARKtT

TABLE 2. A Segment of a "Preprocessed" Dribble File

1-27

Report No. 2625 Bolt Beranek and Newman Inc.

7. Parsing of the Dribble File

In the previous section we have discussed preprocessing of

"raw" dribble. files. To initiate the processing phase, the pre-

processed file must now be copied into LOGO-compatible form by

use of the LOGO command COPY, which has the general form:

FROM)COPY (quoted system file name) (
(unquoted LOGO filename,(TO)

entryname)

For example, if the preprocessed file was given the name

GLICK.LESSON1

COPY "LICK.LESSON1" TO GLICK LESSON1

creates a LOGO file with roughly the same name as the preprocessed

text file. If we now use the LOGO instruction LIST ENTRY GLICK

LESSON1, we get almost exactly the same printout as from the

(TENEX) system instruction LIST GLICK.LESSON1; the only difference

being that the control-T's have become quotes. The important

difference is that "invisible" heading information has been added

so that the LOGO instruction GET GLICK LESSON1 results in the

MAKE statements being executed and the appropriate bindings

entered in the workspace ready for manipulation.

Following a COPY and a GET of the form described in the

preceding section, the analyst has all the lines of the dribble

file in his LOGO workspace. Each line could now be executed using

the LOGO DO command, and a simple iterative procedure suffices to

execute the dribble file lines to any desired point. Such a

direct attack has both unfortunate as well as inconvenient

consequences. First, one is not executing the statements of the

dribble file in precisely the same environment in which they

were first produced. In particular, a GET statement might not

GET the entry fetched by the original execution of that command

1-28

Report No. 2625 Bolt Beranek and Newman Inc.

and a SAVE might be disastrous, possibly clobbering a subsequently

produced entry, replacing it with an outdated version. It is

precisely for this reason that the input stream resulting from a

GET has been incorporated into the dribble file. Both the GET

and SAVE commands, therefore, should be no-ops, i.e., have no
effect. Similarly, execution of GOODBYE might well be inconvenient.

Also there is little point in executing lines with simple parsing
errors.

A second difficulty in direct use of a dribble file lies in

the generation of the information required for the graphical

representation of procedure structure. Each procedure line has

to be broken into elements and each element looked at to determine

procedure interconnections. And, this process has to be repeated

each time a structure is elicited further along in the file.

Also, in a simple direct mode of dribble file access, many invest-

igations such as following the evolution of a procedure definition

would unnecessarily require execution of the entire dribble file

segment.

These difficulties are easily resolved by the generation of

auxiliary information for use in conjunction with the dribble

file itself. Such information includes various data which

expedite the execution of the dribble file such as data pointing

out the non-utility of dribble file lines and where appropriate,

data to speed up graphical displays of procedure interconnections.

The other useful type of information is concerned with answering

analytic questions which really shouldn't require execution of

the file. For example, a catalog of correctly parsed procedure

lines enables the system to give the definition of any procedure

at any point in the dribble file by a simple lookup procedure.

(This cannot be done by simply looking for the definition lines

1-29

Report No. 2625 Bolt Beranek and Newman Inc.

directly because the "state" of the workspace must also be known.)

Furthermore, as the user, through experience, evolves definite

patterns of analysis of student dribble files, he can incorporate

more and more of this analysis into procedures which generate

desired information before the dribble file is scanned.

We call this phase the parsing phase, although parsing is

not the only activity performed at this time. The purpose of the

parsing phase is to make the execution and scanning of the dribble

file efficient and simple at a reasonable cost in time. The

general idea is to provide the analyst, and the analysis system,

quick access to information which is likely to be required

repeatedly in going through a dribble file while carrying out

investigations.

The procedures making up our parser are given in Part 2. We

give here only a summary of the parser's effects and structures.

Each line is parsed and inspected element-by-element with the

fol7owing effects: Some lines are not to be executed automatic-

ally, notably those with errors that might be fatal. '"or the

line numbered "(number) N" an associated variable of the form

"(number) D" is given data which label the line as having

deleterious effects during execution (the user will usually wish

to inhibit their execution during his analysis). Examples of

such data are indicators for the commands GET, SAVE, and GOODBYE,

as we just noted. Also included in this class are lines with

simple parsing errors--such errors are not executed by LOGO and

have no effect on the workspace. Also, in the absence of error-

trapping capabilities, parsing of such lines always pops the

user back to the top level of LOGO, inhibiting execution of

whatever analysis program is being used.

1-30

Report No. 2625 Bolt Beranek and Newman Inc.

Such annoyances can be avoided by skipping over badly formed

lines. These errors, although chiefly parsing errors, can have a

semantic flavor, however, because LOGO is in one of two states at

any point - defining or not defining. The state is completely

determined by finding which procedures have already been defined.

Thus, we can get values for "(number) D" like "NOT DEFINING", and

"FOO ALREADY DEFINED" in addition to local parsing error indicators

such as "MISSING QUOTE". The general strategy is to suppress

execution of all such lines, i.e., to skip over line "(number) N"

if "(number) D" is not empty, although, as we see later,'the

decision to skip or execute can be conditional on the content of

"(number) D".

As the parser goes through procedure definitions, a list of

defined procedures is built up under the name "FINAL CONTENTS".

The value of this variable is considered a list of triples, the

first element of each being the procedure name, the second the

dribble file line on which the procedure has been defined, and

the third the number of inputs the procedure must take. This is

the top level of the catalog mentioned above. At the next level

down, for each procedure FOO, there is a variable "STRUC FOO"

taken to contain a set of pairs. The first element of the pair

is a dribble file line number, the second is the line of FOO

which has been defined on that dribble file line. Thus, the

evolution of any known procedure can be traced, using just

"STRUC (pname)" and simple lookups, and a list of the procedures

defined at any point can be easily determined using "FINAL

CONTENTS". (At any point in time, we have, of course, not a

true temporal referent, but the last line of the dribble file

which has been, or is considered to have been, executed.)

The parsing package, as described, gives all information

necessary to run through the dribble file and this routine

1-31

Report No 2625 Bolt Beranek and Newman Inc.

operation is described in the next section. The user is also

able to specify additional work to be done during parsing. In

fact, as he gains experience with the system and his inquiries

become more and more systematic, incorporation of his individual

facilities might substantially modify the original parsing

package and lead to the development of a customized semiautomatic

system. To make such additions to the parsing procedures easily

available to the user, we have included four special entry points

in the form of the empty procedures $EXAMINELINE, $USEUPLINE,

$EXAMINEEL, $USEUPEL.

$EXAMINELINE and $USEUPLINE are invoked as each succeeding

line is first looked at. The difference between them is that

$EXAMINELINE is to be a command which has no effect on subsequent

parsing of the line; whereas $USEUPLINE must be a predicate,

returning TRUE or FALSE in addition to any action it may perform.

If $USEUPLINE returns TRUE, parsing of the line is inhibited and

the next line is accessed.

Similarly, $EXAM1NEEL is a command which is invoked as each

element of the line is examined. $USEUPEL (like $USEUPLINE) is a

predicate and it returns TRUE or FALSE corresponding to skipping

to the next element or continuing. A fifth procedure $ENDLINE is

invoked after the line is parsed to permit "cleaning up" of the

work the user-defined procedures may have done.

Each of these empty procedures is "filled in" in the usual

way, by defining a LOGO procedure with that name. If these empty

procedures are not "filled in", parsing is carried out in the

standard manner. These procedures, if wished, can be used to

modify as well as examine the line being worked on--the name

"CURRENT LINE" is given to the current line and its remaining

1-32

Report No. 2625 Bolt Beranek and Newman Inc.

portions as it is processed. Its number is :LINE NO:. Any of

the five procedures may be defined to modify any of the global

variables described earlier or, for that matter, to define new
ones. In Part 3 we give two examples of definition of such
procedures. One example deals with parenthesis-checking, the

other with checking for command or operation.

An annotated listing of the parsing system is given in
Part 2. A brief description of these procedures follows here,

however, as an aid to the user who wishes to extend them. The

top-level procedure is $PARSE which performs the necessary

initialization, elicits a dribble file name, fetches it, and

calls $GOTHROUGH to step through the lines of the dribble file.

$STARTLINE then begins the actual parsing by passing the line to

one of several procedures, depending on the type of line. Direct

lines are immediately scanned, element-by-element, by $DOLINE;

procedure definition lines pass first through $STOREDP. The

other possible branches are the self-explanatory $PARSETO (for

parsing procedure title lines), $PARSEEDIT, $PARSEEND,

$PARSEERASE, $PLERASE (for line erasure, ERL), $PLEDIT (for line

editing, EDL). These, in turn, call procedures which handle

various levels of detail. $EXAMINELINE, $USEUPLINE, and $ENDLINE

are, as might be surmised, contained in $STARTLINE and the pro-

cedures $EXAM1NEEL and $USEUPEL in $DOLINE. Utility procedures

include $GOODPARSEP :N: which checks emptiness of D:, i.e.,

whether the line passed muster or might need to be inhibited

during execution, $ADDERROR which adds to :(N) D:, and $ADD

:PLACE: :MES: which adds :MES: to the contents of :PLACE:.

Table 3 is a summary of the variables used in parsing.

In generating the structure elements :(N) C: used for graph-

ing student procedure structures, it is necessary to check

1-33

Report No 2625 Bolt Beranek and Newman Inc.

8. An Example of the Output of Parsing

In the following pages we show the results of $PARSE on a

dribble file. The input is preserved--it is simply the "(n) N"

and "(n) A" values. The structure variables cover the entire

dribble file, though we show only part of the file in the example- -

we leave out some of the middle, as indicated, (It has been left

unchanged by parsing.) Again the control T's (+T's) are inter-

preted by LOGO as quotes. Table 3 summarizes the meanings of all

variables used in the example shown in Table 4. Following the

first three assignment lines, the middle portion repeats the out-

put of the preprocessor (lines 1 N through 90 N; we show only

the beginning and ending lines). The last part of the listing

shows the final form of the parsed lines. We show all lines

through 75 C, which corresponds to the last line of Tables 1 and 2.

MAKE tTCURRENT LINEtT tTtT
MAKE tTCURRENT PROCtT sTTRTANGLEtT
MAKE tTFINAL CONTENTS1T iTTRIANGLE i 1 MARK 9 2 SUPERMARK is 4 RECTANG

LE 19 5 SUBRECTANGLE 26 3 FIND 33
1 HALF 39 1 DELETE 43 2 STRIPE 4

*8 4 MIDDLE 55 2 NUM 87 1 TRIANGLE
90 1 TRIANGLE 176 10T

MAKE tT1 NtT tTTO TRIANGLE : N :$T
HAKE tT2 NtT tTle MARK " X "tT
MAKE tT3 NtT eT20 T IS SUM " X " 1 : N :tT
MAKE tTil NtT tT30 IF? STOP$T
MAKE tT5 NtT tT40 MARK SUM " X IsT
MAKE 1T5 NtT tTENDtT
MAKE tT7 NtT tTTRIANGLE 3T
MAKE tT8 NtT tTGET JOHN CAD'T
MAKE tT9 AtT tTSTOREDtT
MAKE tT9 NtT tTTO MARK : CHAR 1 1 N 1tT
MAKE tT10 AtT tTSTOREDtT

1-35

Report No. 2625 Bolt Beranek and Newman Inc.

MAKE tT80 NtT tTl5 TYPEtT
MAKE '181 NiT 'TEDIT TRIANGLE'?
MAKE 1182 NiT tT15 TYPE " "oT
MAKE *183 NoT 1T15 PRINT "
MAKE tT84 NtT tTENDtT
MAKE 'TES N'T tTERASE TR7.ANGLEtT
MAKE '186 N'T tiTO i N stA
HAKE $187 N'T tTTO NUM : N itT
MAKE '188 N'T tT10 MAKE i N 2 14?
MAKE $189 N'T 'TEND'?
KAKE!?90 No? 'TTO TRIANGLE : M :'T

MAKE tTSTRUC TRXANGLE'T tT1 0 2 3 4 5 63 64 69 70 80 82 83 85 ERASE 90
oil 0 91 92 93 94 95 111 123 125 126
e* 127 143 144 160 ERASE 176 0 179
$.184tT

MAKE tT2 CtT tTTRIANGLE MARK*?
MAKE tT3 CtT tTTRIANGLEtT
MAKE tT4 Ct? tTTRIANGLEtT
MAKE 115 CtT 11:TRIANGLE MARK ItT
HAKE tT6 1;tT tTTRIANGLEtT
MAKE tT7 Ct? tTTRIANGLEtT
MAKE tT8 DtT tTN01.cURRENT,T
MAKE tTSTRUc MARKtT 'T9 0 10 11 12 13 160 ERASE!?
HAKE $110 CtT tTMARKtT
MAKE tT11 C11 tTMARKtT
MAKE 1112 CtT tTMARKtT
MAKE 1113 CtT tTMARK MARKtT
MAKE IT14 CtT tTMARKtT
HAKE tTSTRUc SURERmARKtT '115 0 16 17 160 ERASEtT
MAKE tT16 Ct1 tTsupERMARK MARK'?
MAKE '117 Ct? tTSUPERMARK MARK'?
MAKE '118 C'T tTsUpERMARKt1
MAKE tTsTRUc RECTANGLEtT 1119 0 20 21 22 23 24 160 ERASE'?
HAKE 1120 CtT tTRECTAUGLE SUPERMARKtT
MAKE 1121 C'T tTRECrANGLEtT
MAKE tT22 Ct? tTREcTANGLEtT
MAKE tT23 C'T tTRECTANGLE'T
MAKE '124 Cs? tTRECTANGLE RECTANGLE'?
HAKE tT25 Ct? tTRECTANGLE'T
MAKE tTSTRUC SUBRECTANGLEIT '126 0 27 28 29 30 31 160 ERASE!?
MAKE 1127 CtT tTsusRECTANGLE SUPERMARK'T
MAKE 1128 C'T tTSUBRECTAUGLE'T
MAKE 1129 Ct? tTsUoRECTANGLEtT
MAKE tT30 CtT tTsUBRECTANGLEtT

1-36

Report No. 2625 Bolt Beranek and Newman

MAKE 1131 CIT 'TSUBRECTANGLE RECTANGLE'T
MAKE tT32 CtT tTSUBRLCTANGLEtT
MAKE tTSTRUC FIND'? 'T33 0 34 35 36 37 160 ERASEtT
MAKE 1T34 CIT tTFIND'T
MAKE tT35 CtT 'TFIND'T
MAKE tT36 CtT TFINDtT
MAKE tT37 CtT tTrIva FINDIT
MAKE tT35 CYT "IFIND'T
MAKE tTSTRUC HALFtT tT39 0 40 41 160 ERASE'?
MAKE 1T40 CtT tTHALFtT
MAKE 1T41 CtT tTHALF FIND'?
MAKE tT42 CtT tTHALF+?
MAKE tTSTRUC DELETE'? tT43 0 44 45 46 160 ERASE!?
MAKE tr44 CtT tTDELETE'T
MAKE tT45 CIT t?DELETE'T
MAKE '146 CtT tTDELETE DELETE'?
MAKE 1147 CtT tTDELETE'T
MAKE tTSTRUC STRIPE'? 'T48 0 49 50 51 52 53 160 ERASE'?
MAKE 1149 CIT tTSTRIPE SUBRECTANGLEt?
MAKE '150 CIT 'TSTR/PE SUBRECTANGLEtT
MAKE tT51 CIT tTSTR/PEtT
MAKE 1152 CIT tTSTRIPEtT
MAKE 1153 C'T tTSTR/PE STRIPEtT
MAKE 1154 CIT tTSTRIPEt?
MAKE tTSTRUC MIDDLEtT tT55 0 56 57 160 ERASE'?
MAKE '156 CIT tTMIDDLE MARK HALF HALF'?
MAKE 1157 Ct? tTMIDDLEtT
MAKE 1158 CtT tTMIDDLEtT
MAKE '160 D'T 'TALREADY.DEFINED'?
MAKE 1161 C'T t??BIANGLEtT
MAKE 1163 CIT tTTRIANGLE MARK'?
MAKE 1164 CtT tTTR/ANGLE MARK'T
MAKE 1T65 C'T TTRIANGLE'T
MAKE 1166 CIT tTTRIANGLE'T
MAKE 1167 C'T 'TTRIANGLEtT
MAKE 'T69 CIT tTTRIANGLE'T
MAKE 1170 CtT tTTRIANGLE MARKtT
MAKE 1171 CIT tTTRIANGLE.T
MAKE 1172 CIT 'TTR/ANGLEt?
MAKE '173 CIT 'TTR/ANGLE'T
MAKE 1174 CIT 'TSUBRECTANGLEtT
MAKE 1175 CtT tTSUPERMARK'T

TABLE 4. Listing of a $PARSE Output

1-37

Inc.

Jleport No. 2625

9. RUNning the Dribble File

Bolt Beranek and Newman Inc.

In this section we describe the RUN system and the RUN phase

of the analysis. Once the parsing of the dribble file, with its

attendant generation of auxiliary information, is completed, the

file is ready to be studied. We call the analysis subsystem

which is used for this the RUN system.

9.1 The Display Configuration

In its present form the RUN system uses an IMLAC display

terminal for graphic as well as alphanumeric presentations. The

specific graphics commands and their implementation are discussed

in the system documentation (Part 2); here it suffices to mention

that these include both relative and absolute vector drawing

capabilities as well as various alphabetic subroutines. The

graphics capability is chiefly the drawing of procedure structure

diagrams similar to those shown in Figures 1 and 2 above; the

bulk of the information presented is'in alphanumeric form -- this

includes both the analyst's commands to the system and the

unfolding of the dribble file, i.e., the student commands and

their consequent output.

The alphanumerics are kept separate from the graphics -- the

top part of the IMLAC screen serves as a scrolled teleprinter,

the lower hclf serving for graphics. A sample screen is shown in

Figure 3. (The photocopy was made by a hard-copy device associated

with the IMLAC.) In the situation shown, the dribble file user

typed WHERE to the dribble file system which responded immediately

below, telling him what point has been reached in the analysis.

The user then typed a DISPLAY command (DISPLAY "KEEPTALKING")

which resulted in the procedure structure diagram being displayed

1-38

Report No. 2625 Bolt Beranek and Newman Inc.

oiimEPE

AI OF,I0B.E LINE S?

Ut4ICH IS

YEEPTALrING 3 2

1HE PROCEDuRES C..00SE PAL:00"CrOOSE GEI!,00 CEIvEPD OEIADJ GETCONN
HAYEDICI:WiriPT LII'LEENT SPtPLESCNI BISE.NI InLr vrAPIALVIO HAvE BEENDEFINED
OISPLAy 'rEEP7A0,114G.

(Note: The procedure names in the boxes,
although quite readable on the screen, do
not reproduce legibly.)

Figure 3. Example of a RUN system Interaction on the IMLAC
Display Terminal.

1-39

Report No. 2625 Bolt Beranek and Newman Inc.

underneath. Procedure structure diagrams are discussed below, as

are WHERE, DISPLAY, and the other RUN system commands.

9.2 The Augmented Dribble File

In RUN phase, the analyst has a considerably augmented dribble

file to work with. In addition to a copy of the original file,

he has the auxiliary data summarized in Table 3 above. Generally

speaking, these fall into two classes, the automatically generated

"comments" "(n) A" "(n) B" and "(n) D" and the reconstruction aids

of the form "(n) C", "FINAL CONTENTS", "STRUC (pname)". In

addition to providing textual information, these comments may be

considered a descriptor set that can be used as switches by run-

time commands. A standard example of the use of such a switch

is in the conditional execution of the lines of a dribble file,

as when the analyst skips over those obviously defective lines

labeled by a non-empty "n (D)".

Besides the special, temporarily used variables generated

by the graphics package subroutines, there are just two global

variables which are monitored by the RUN system. "DRIBBLE NO",

initially 0, gives the line no. up to which the dribble file has

been executed. "CURRENT PROCEDURE", initially empty, gives the

name of the procedure currently being defined in the course of

execution of the dribble file. (The latter piece of information,

although obviously known to the LOGO language system, is not

otherwise accessible to LOGO programs.)

1-40

Report No. 2625 Bolt Beranek and Newman Inc.

9.3 Execution of Dribble File Lines

To begin use of RUN, the command $STARTRUN asks for a dribble

file name and initializes the system. The analyst then has two

essentially distinct modes of interaction. First, and most

straightforward, he can execute the dribble file sequentially in

a variety of different ways, depending upon the kind of information

he wishes to extract. Alternatively, he can interrogate the

dribble file without any execution, possibly in a nonsequential

manner. And, of course, he can intermix these two modes.

In the first mode of work, the analyst has three kinds of

execution facilities available to him. First, he can simply look

at the lines of the dribble file as they are being executed

together with the computer responses that they generate. He can

execute the dribble file one line at a time using the command

$DOLINE. This results in the next dribble file line being

printed (with three asterisks on each side to set it off) and

then the execution of the line, if it has parsed correctly.

$DOLINE then stops. He can perform a specified number of lines

with the command $DOTO :LINE NUMBER:. And, he has available a

conditional stop as follows. $DOUNTIL :DESCRIPTOR: executes the

dribble file until the specified :DESCRIPTOR: is found (as the

comment associated with that dribble file line). Finally,

$DOALL executes the entire dribble file line-by-line. $DOALL,

$DOTO, and $DOUNTIL call $DOLINL repeatedly.

A second source of information is from "looking around,"

after having executed the dribble file up to some point. The

analyst can list the definition of any procedure in the dribble

file which is defined at that point. He can execute any

procedure (the student's or his own) or, generally speaking,

1-41

Report No. 2625 Bolt Beranek and Newman Inc.

perform any LOGO commands. There is, of course, the danger that

in certain activities, such as redefining student procedures, the

user will destroy the "state of the world." Therefore, we have

provided the self-explanatory commands $SAVEWORLD and $GETWORLD

to enable a user to save the state of the world, make any modifi-

cations that he might desire, and when he is finished to get back

to where he was. It is, of course, only necessary to use these

commands when the user intends to type LOGO commands which will

modify the existing procedure structures or global names. The

user may define his own LOGO procedures to aid in the "looking

around" process. The Analysis Package (Part 3) contains several

examples of debugging and modification routines which are typical

of such procedures. (The naming conventions -- sentences for

global procedure names and $ as first character of procedure

name must, of course, be adhered to in such procedures to avoid

conflict with student programs.)

The third execution-based type of information is a diagram

of the procedure structure at any point in the dribble file. By

ILsing the command $DISPLAY :ROOT: the user generates a graphic

representation of the procedure structure starting at :ROOT:.

The primitives for this display are generated as part of the

augmentation of the dribble file during "parsing."

$WHERE is a general interrogatory command which tells the

user where he is in the dribble file--that is, up to which line

he has executed, and the set of procedures which have been defined

at this point. As part of the graphics display, if a procedure

is being defined at that point, we also show, in smaller print,

the entire definition of the procedure at that moment in time.

1-42

Report No. 2625 Bolt Beranek and Newman Inc.

For the other major mode of run-time analysis, a completely

separate class of commands enables the user to interrogate the

dribble file without any execution. The command $ALLDESCR outputs

a list of all the different descriptors used in comments through-

out the dribble file. This command is useful in connection with

subsequent execution because any of these descriptors can be used

as a modifier with $DOUNTIL to terminate execution. We can also

obtain the set of lines containing any given descriptor with the

command $FINDLINES :LINE NUMBER: :DESCRIPTOR:. This command

types all the lines after :LINE NUMBER: in the dribble file which

contain that descriptor.

We can readily construct the definition of any procedure at

any point in the dribble file using only information that was

there during parsing, i.e., without any execution whatever.

$STEPTHROUGH :PROCEDURE NAME: prints the successive variations of

:PROCEDURE NAME: as subsequent lines were defined: it first

gives the original title of the procedure, then the first line,
etc. If a line is replaced, the new line replaces the old line.

Thus the definition of :PROCEDURE NAME: "unfolds"'in time.

9.4 Modifying the Display

Two predicate procedures are included in the package to

facilitate user modification of display and execution of dribble

file lines. (Of course, an ambitious user can modify the package

in other ways.) $NICEP enables the user to define additional

criteria for execution or non-execution of dribble file lines.

(Lines which parse badly are never executed independent of

$NICEP.) If $NICEP outputs "FALSE", the line is not executed.

Initially, $1,,ICEP is defined as,

1-43

Report No. 2625 Bolt Beranek and Newman Inc.

TO $NICEP
10 OUTPUT "TRUE"
END

Additional lines of the form IF OUTPUT "FALSE" can be added to

achieve the desired effect.

$SHOWL1NEP can be used to control the form of the dribble

line display. For example, the user may not wish to see the

stored lines being retrieved by a GET contained in the file.

Initially $SIIOWLINEP is defined as:

TO $SHOWLINEP
10 OUTPUT "FALSE"
END

This defaults to the standard display of each line. The

output "TRUE" overrides this display, thus to avoid seeing stored

lines, for example, merely change line 10 to

10 IF $STOREDP :DRIBBLE NO: OUTPUT "TRUE"
ELSE OUTPUT "FALSE"

where $STOREDP merely reports the non-emptiness of "(:DRIBBLE NO:)

A".

9.5 Summary of RUN Commands

The RUN system commands are listed and briefly described

in Table S following.

1-44

Report 2625 Bolt Beranek and Newman Inc.

$STARTRUN initializes RUN system

$DOLINE executes next line of dribble file

$DOTO :N: executes until line :N:

$DOUNTIL :COND: executes until the comment :COND: is found

$DOALL executes entire dribble file

$SAVEWORLD

$GETWORLD

save current status of workspace

retrieve 'previously saved status

$WHERE prints information on current position in
file

$DISPLAY :ROOT: displays procedure structure as of current
position in dribble file, starting at
:ROOT:

$ALLDESCR lists all comments in dribble file

$FINDLINES :N: :DESCRIPTOR: lists all lines after :N: contain-
ing :DESCRIPTOR: as part of the
comment

$STEPPROCEDURE :PNAME: "unfolds" definition of :PNAME: across
entire dribble file

$NICEP

$SHOWLINEP

user-defined procedures to
modify display

TABLE 5. Summary of RUN Commands.

1-45

Report No. 2625 Bolt Beranek and Newman Inc,

Part 2.

System Documentation

2-0

Report No. 2625 Bolt Beranek and Newman Inc.

I. Introduction to System Documentation

In the preceding User's Guide (Part 1) we have given a

general description of the parts of our dribble file analysis

system as well as instructions on their use. Here we present

the annotated set of programs as a more complete documentation

of our system. For ease in user extension and customization,

all these programs except for a few very trivial front end

procedures were written in the LOGO programming language, a

complete description of which is contained in the Appendix.

Generally speaking, there are two types of information of

interest to a user in the analysis of dribble files. First there

are queries which involve, or potentially involve, the entire

state of the world created by the student's work up to that point.

(What happens when this program is run with inputs X and Y?)

A common query of this kind calls for execution of a procedure,

possibly invoking any number of other procedures.

On the other hand, a question may require only a very small

local part of the state of the world for its answer: at what

point was procedure P defined? what was its definition at

time t?, etc. Questions involving the entire state of the world

require that the entire state of the world be recreated. It

turns out, however, that auxiliary information generated during

pre-processing of the dribble file can be used to directly answer

broad classes of this latter type of question without having

difficult searches or any live execution.

Furthermore, as we will describe later, the preprocessing

can be modified by user-written or user-specified programs so

that auxiliary information is generated in advance to answer

2-1

Report No. 2625 Bolt Beranek and Newman Inc.

efficiently Olatever additional classes of "local" questions are

deemed to be of interest.

Thus, we subdivide the preprocessing phase into two subphases,

first, the preprocessing proper in which relatively straight-

forward modifications are made to the text to put it into a form

better suited for further work and, second, a preanalysis or

parsing phase in which the auxiliary information mentioned above

is generated. These two parts of the preprocessing are sharply

distinguished in our implementation, which has a TECO macro

preprocessor driving a LOGO "parsing analyzer."

Section 2 of the system documentation contains a brief

description of the ground rules under which the programming was

performed. Sections 3, 4, and 5 contain annotated listings of

the three parts of the system described above -- preprocessing,

parsing, and running. Further information on the graphics

capabilities utilized is required, since LOGO graphics tend to

be relatively system-dependent. Section 6 contains a description

both of the facilities used and of other possible configurations.

2. The Use of LOGO as Both System and Object Language

In addition to using the LOGO programming language as an

"object language" for student programming work, we have chosen

it as the vehicle for implementation of the dribble file analysis

system. Our choice of LOGO for the analysis system programming

language was made with considerable deliberation after consider-

ing several other alternatives, including LISP, PL-I, and

FORTRAN IV. Those very features which make LOGO so useful in

the classroom are the ones that enable a relatively unsophisti-

cated user to modify and extend the programs in the dribble file

2 -2

Report No. 2625 Bolt Beranek and Newman Inc.

analysis system. Chief among these features are a procedural-

based programming heuristic and an unusually pure and context-frPe

syntax.

We realized that there are certain dangers in choosing the

same language for both the analysis and the object being analyzed.

The fact that, in a sense, LOGO syntax is used to analyze LOGO

syntax can lead to a system inbred to a degree which makes trans-

ferability to other object languages impossible in any practical

sense. For example, error diagnostics can be generated directly

from the run-time stacks instead of by an external parsing

procedure. In the extreme case, the dribble file analysis system

could become just an extension of the LOGO interpreter.

To avoid such difficulties, we made the firm rule that the

only way in which the LOGO interpreter would be used in conjunc-

tion with the contents of dribble files would be via an EXECUTE

LINE type of command (that is, in "running" dribble files. All

sorts of editing and viewing are perrflitted as long as they are

external to the LOGO evaluator.). Everything else would be done

by procedures external to this interaction (which "happen" to be

written in LOGO). This decision enables the system we have

developed to be useable with any language having some sort of

execute command (i.e., with virtually all languages). All that

needs to be done is to have the execute command implemented

inside the LOGO interpreter. More will be written later about

differences between various "object languages" vis-a-vis the

design and use of the dribble file analysis system.

2-3

Report No 262S Bolt Beranek and Newman Inc.

3. The Preprocessing

A general description of preprocessing appears in the User's

Guide. The preprocessing is done by a set of eight TECO macros,

which are called in turn by a "loading" macro that also elicits

input and output file name. The specific effects of each macro

are as follows:

LOADER) Loads rest of TECO macros, elicits input and output file

designations, and executes macros.

1) Erases first line of dribble file which just contains

identification, Changes CR and hS to EOL (ASCII 31)

to ensure proper line termination. Checks for last

character of file being (EOL) . Changes line feed to

space.

2) Finds rubouts, deletes line to that point. Marks

(RUBOUT) at end of preceding line.

3) Finds lines containing 8 and and changes all

editing characters to textual equivalents, since at this

point it would be too difficult to recover the context

in which and 8 operate.
4) Performs effects of \ and , in order, left to right.

5) Finds stored lines and marks them with @.

6) Kills time marks.

7) Numbers limes and comments (RUBOUT and STORED),in form

as LOGO names.

8) Spaces out separators.

TECO is the character-oriented text editing language on the
DEC PDP-10. It is described in the DEC System-10 User's
Handbook and the modifications made by BBN are given in TENEX
TECO, a BBN report, NIC 19937.

2-4

Report No. 2625 Bolt Beranek and Newman Inc.

LOADER.TEC

+HTL
niIi.T.q.etYLHXIIERTWO.TEC3HX2IERTHREE.TECIHX3IERFOUR.TEC$HX4TERFIVE.TECI
o+HX5LER:::IX.TECIHX6fEREVEN.TECtHX7IEREIGHT.TECEHX3MIMI$M2IM3IM4$M5IM6
4 41!.17tMSTEXI

ONE. TEC

O. <1,Y1; $-BI31 IS> 0..110 S C 1"e af.)
S; 1>103'SI;

.431$1'

TWO.TEC

1 671?74YD
0,3:S14 10K$-2C10A-127)"N1127Il'I>

THREE. TEC

fy

0,1tO'N1; OK ;(1-
++IiticTRL-wc/s<la-
o.OK<(1-(01=1-31)+(
..$'$<111-14)"E$-DI

FOUR.TEC

<1A-31).
14)"ES-D
1A-31)))
ICTRL-Nt

(1A-305); (IR-
SICTRL-NVI(1A-

(1A-12)"ES-SIS
'I(111-13)"El-DI

1-111311I>1(2-1:)JS<IA-31)"NI

92) "El-DI
1.3)"ES-DE
IV13LASHI
ICTRL-RS'

MSLASHVS(la-23)"El-
ICTRL-RVI>t>011:SI;
'$(1/1-23)"EI-DTICTRL-W
1>1>

OJI4PEGH3(.-Z)"ELOENDt'l(IA-92)"Et-2111.0BEGF'f.(1-23,"EL-Dtes-C1(1-(0A-3
**2)+(la-32).(1A-31).(1A-310); LDE/L'OBEGI:EHDIS

2 -S

Report No. 2625 Bolt Beranek and Newman Inc.

FIVE.TEC

)..11.<:0:00:001.; L-C1IPt>0J<:S24:00:001.;

SIX.TEC

1

3.3(C.-2+1);
31111LONIB(1A-32'/"E/DIDLODPVIOA-127)"EIDLOLOOPL'L(111-64)"E..111101_030VI(la-D11"El.-DVIAS

II I>

SEVEN.TEC

0110U2I<<.-2:+1); N12011 12011L-2C1(1A-64)"81DOL1I1AKE1204-4,I1OZ\I At20II 1201ILISTORED120I1I
t....-2.:73'1(1A-127)"EID0LIIMaKE120I102\II B120III 120IIRUBOUT120111EL-2C1'1C120I1CL>

EIGHT.TEC

1

0J<:.3\14 $-2.11:>10JOS"1;I-IC.31 I10EI 1>I0J<1;S-1C1I 11CTIii 110II 11C11 LICII
ElCEI I>0J<:S(141-1C1I 11C1I I>(iJ<:3)1;1-1.+CII 1101i B>101:3=1;1-1CII

2-6

Report No, 2625 Bolt Beranek and Newman Inc.

4. Parsing

The procedure structure of this s3ction of the program is

quite completely discussed in the User's Guide. The main omission'
there is discussion of multiline commands - EDT, EDL, and two-line
MAKE commands. These are all handled correctly by the parser,

except in those cases for the first two in which' fiN and +R
are used. The parser simply puts such lines as comments following
the EDT or EDL instead of expanding them. It is not particularly

difficult to handle this properly if it is felt necessary to do
so. The annotated program listings follow. The main procedures

are given in a fairly natural order, followed by the small utility
programs marked U, and empty user-definable procedures (as

described in the User's Guide, Part 1) marked E.

[1]

TO spARss ;.ol, LEVEL PARSING PROCEDURE;
0 $$INITNAMES
20 TYPE "DRIBBLE FILE:"
30 DO SENTLNOL "GET" REQUEST
($0 $GOTHRCUOi 1

END

[2]

TO $$INITNFOIES ;INITIALIZES LIST OF UUILTINS TO BE OF FORM "(BUILTIN) BP
**" IS "A7;

0 ERASE ALL NAMES
20 $$IX $IDP
END

[3]

TO $$IX :LIST: :USED BY /NITS/WN;
0 IF 'EMPTYP :LIST: STOP
20 MAKE SENIENCE "RP" FIRST :LIST; "A"
30 $$IX BUItINST :LIST:
END

2-7

Report No. 2625 Bolt Beranek and Newman Inc.

[4]

TO $$BP ;U.,:,1) BY $$IX;
0 OUTPUT "ABBREVIATE. AND ASK AS BACK BOTH BUTFIRST BUTLAST CANCEL CLOCK

** COUNT DATE DIFFERENCE DIVISION DO
** EDIT EDI1LINE EDITTITLE EITHER EM
**PTYP ENO ENTRIES ERASE ERASELINE E
**XIT FIRST FRONT GET GO GOTOLINE GO
**ODBYE GLEATERP HORN IIFALSE IFTRUE
** IGNORE IS LAST LEFT LINES LIST LO
**CAL MAKE MAXIMUM MINIMUM NUMBERP 0
**F OUTPUT PRINT PRODUCT QUOTIENT RA
**NDOM REMAINDER REQUEST RESETCLOcK
**RIGHT SAVE SENTENCE SENTENCEP SIZE
** STOP SUM TEXT TEST THING TIME TIT
**LE ,TO TOUCRLEFT TOUCHRIGHT TRACE T
**YPE WAIT WORD WORDP ZEROP + * /
**) (IF THEN ELSE ABB ta EL C DIFF
**EDL EDT El EP ER ERIE I GTL GB GP
**Fr IFT L MAX MIN NP OP P PR QUO RE
**M REQ S SP SS T WP W GP SENTENCES
**SS tt"

END

[5]

TO $00THRcUGH :DRIBBLE no ;ITERATES PARSING THROUGH LINES;
5 MAKE "cUFAENT LINE" SENTENCES THING SENTENCE :DRIBBLE No! "N"
.0 TEST EMP.LYP :CURRENT LINE:
20 IFTRUE SCLEANUP
30 IFTRUE _LOP
40 $STARTLINE
50 $GOTHRLUGH SUM :DRIBBLE NO1
END

2-8

Report No. 2625 Bolt Beranek and Newman Inc.

16)

TO $STARTLINE ;PARSES ONE LINE, DISPATCHES ON TYPE OF LINE TO $DOLINE,$2
**MAKE (2LINE MAKE) $STORED OR ONE 0
io*F THE PROCEDURES INDICATED ON LiNE
sip 110;

0 SEXAMINELINE
20 IF $USEUPLINE STOP
30 MAKE "CURRENT LINE" 1SUCKALLSEMIS :CURRENT LINE:
40 TEST $STOREDP
50 IFTRUE NDLINE
60 IFTRUE .0P
70 TFST $MP FIRST :CURRLNT LINE: "GET SAVE GOUDHYE GB CANCEL GO"'
80 IFTRUE $ADDERROR "NOT.CURRENT"
90 IFTRUE $-NDLINE
.00 IFTRUE STOP
10 IF NOT ,ITHER $2MAKE $DISPOCHP FIRST :CURRENT LINE: "TO $PARSETO ED

**IT $PARSEbDIT END $PARSEEND ERASE
**SPARSELRASE ERL $PLERASE EDL $PLED
**IT EDT $P.VEDIT TITLE $PTITLE" THEN

$DOLINE
20 SENDLIN

END

[7]

TO SDISPATCHP :EL: :LIST: ;CALLS PROCEDURE ON :LIST: WHICH FOLLOWS :EL:,
** OUTPUTS "FALSE" ON FAILURE;

IF EMPTYP :LIST: OUTPUT "FALSE"
20 TEST IS :EL: FIEST :LTS1:
25 IFTRUE MAKt "CURRENT LINE" SUTFIRSr :CURRENT LINE;
30 IFTRUE DO eiRsT EUTFIRST :LIST';
40 IFTRUE OUTPUT "TPUF"
50 OUTPUT $DispATeNp :EWBUTFIRST BUTFIN57 :LIST:
END

2-9

Report No. 2625 Bolt Beranek and Newman Inc.

[8]

TO $DOLINE ;HANDLES "NONSFECIAL" LINE;
0 IF EMPTY' :CURRENT LINO: STOF
20 $:XAMINE.L
22 TLST U. . UPEL

25 IFIRUE $001,1140
28 IFTRUE 10P
30 TEST EUHER NUMBLRP FIRST :CURRENT LINE: $RUILT1NP FIRST :CURRENT LIN

**E:
40 IFTRUE MAKE "CURRENT LINE" BUlFIRST :CURRENT LINE:
50 IFTRUE $00LIFE
60 IFTRUE LOP
70 TEST IS FIRST :CURRENT LINE: :QUOTE:
80 IFTRUE HAKE "CURRENT LINE" $SUCKQUOTE BUTFIRST :CURRENT LINE:
90 IFTRUE $VOLINE
00 IFTRUE STOP
,10 TEST I FIRST :CURRENT LINE: ";"
120 IFTRUE MAKE "CURRENT LINE" $SUCKSEMI bUTFIRST :CURRENT LINE:
.30 IFTRUE $DOLINE
40 IFTRUE STOP
.50 TEST X FIRST :CUPRDNT LINE: ":"
/60 IFIRUE MAKE "CURRENT LINE" ISUCKDOTS BUTFIRST :CURRENT LINE:
,70 IFTRUE $DULINE 0
80 IFIRUE STOP
.90 5ADDSTRUC FIRST :CURRENT LINE:
200 MAKE "CURRENT LINE" BUTFIRST 1CURREN1 LINL1
210 $DOLINE
END

[91

TO $2MAKE ;HANDLZS 2 LINE MAKES;
0 IF NOT IS :CURRENT LINE: "MAKE" OUTPUT "FALSE"

20 SPL2MAKE
30 OUTPUT "-RUE"
END

2-10

Report No. 2625 Bolt Beranek and Newman Inc.

[10)

TO SPL2H4KE ;USED BY $2MAKE,
,0 IFTRUE $ADUERBOR "MULTIMAKE.INTERRUPTEU"
20 IFTRUE $A00ERROR "MULTI-MAKE.INTEPRUPIED"
30 IFTRUE -'40P
40 TEST $RUBOUTP SUM :DRIBBLE NO 1

50 IFTRUE SAD ARDOR "NULTI-MAKE-INTERRUPTED"
60 IFTRUE SAW) SENTENCE SUM :DRIBBLE NO: 1 "D" "MULTI-MAKE.INTERRUPTEU"
70 IFTRUE :4:0P
80 SADD SENTENCE :DRIBBLE NO: "N" SENTENC6 THING SUM :DRIBBLE NO 1 "N"

**THING SENTENCE SUM ;DRIBBLE NO: 2
**"N"

90 $ADD SENTENCE SUM :DRIBBLE NO: 1 "D" "IUNORE"
.00 $ADD SENTENCE SUM :DRIBBLE NO: 2 "0" ''IGNORE"
10 MAKE "CURRENT LINE" THING SENTENCE :DRIBBLE NO: "N"
20 $STARTLINE

END

ty

TO SSTOREDP ;USED BY $STARTLINE TO RANDLE PROCEDURE LINE;
0 IF NOT RuNBERP FIRST :CURRENT LINZ: OUTPUT "tALsE"
20 SDOSTDRED
30 OUrPUT ".:RUE"
END

[12)

TO SDOSTORED USED BY STORED'',
7-0ffCh2TYP :CUhRENT PROC: SADOERROR "NOT-DUININGH
20 IF GREA1L-.RP 1 FIRST :CURRENT LINE: SADUERROR "INVALID,1INENO"
23 $ADDSTRUC SENTENCE :CURRENT pm:pc: FIRST :cURBENT LINE:
25 MAKE "CURRENT LINE" BUTFXRST :CURRENT LINE:
30 SDOLINE
40 IF $G0c.DPARsEP :DRIBBLE NO: ',ADD SENTENCE "MUCH :CURRENT PROC: SENT

isENCE :DRIBBLE 1,0: FIRST THING SENT
**ENCk, :DRIBBLE N0: "N"

50 IF NOT $GooDPABEEp :DRIBBLE NO; MAKE SENTENCE ;DRIBBLE NO: "C" :EMPTY

END

2-11

**1

Report No. 2625 Bolt Beranek and Newman Inc.

[13]

TO SPARSETO ;CALLZD BY $STARTLIRE FOR PROCEDURE DEFINITIONS;
0 $Dolxv,n FIRST :CURRENT LINE: DUTFIRSI :CURRENT LINE:

END

[14]

TO $DO'IITLE :NAMC% :ARGLIST: ;USED BY $PARSETO FOR PROCEDURE DEFINITION
**LINES;

,0 SCHECKNVIE :NAME:
50 SSTARTUEk :NAME: $COUNTARGS :ARGLIST: 0
END

[15]

TO SCHECKNAME :NAME: ;CHECKS VALIDITY OF NAME FOR DEFINITION OR
**REDEFINITION;

t0 IF NUMLIEHP :NAME: 1,ADDERROR "NUMBER..NA4E"
20 IF $mp :NAME: SENTENCE "() ;" :QUOTE: SADDERROR "SEPAHATOR.NAME"
30 IF SBUll,INP :NAME: iADDERROR "BUILTIN.NAME"
40 IF %I:WIN ZDP :NAME: $ADDERROR "ALREADY.DEFINED"
END

[16]

TO SSTARTDEF :NAME: :N: ;PARSES TITLE LINE;
.0 IF NOT IGO0DPhRSEP :DRIBBLE NO: STOP
;5 MAKE "CURRENT PROC" :NAME:
20 $ADD SENZNCE "STRUC" :NAME: SENTENCE :DRIBBLE NO: 0
30 $ADD "FINAL CONTENTS" SENTENCES :NAME: :DRIBBLE NO: :N:
END

2-12

Report No, 2625 Bolt Beranek and Newman Inc.

[17]

TO SCOUNTAPGS :LIST: :c1R: ;CHECKS VALIDITY AND COUNTS ARUS OF ARGLIsr I
* *11 TITLE;

5 IF EITHER IS FIRST :LIST: "AND" IS FIRbi: :L1S4: "OF" JUTPUT 1cOUNfARGS
* * BUTFIRST 1LIST:

[0 IF EMPTY? :LIST: OUTPUT :CTR1
20 IF IS FIRST :LIST: ":" OUTPUT $COUNTARuS $SUcKDOTS BUTFIRST =LIST: SU

* *M :CTR: 1

30 IF IS FIRST :LIST: up' OUTPUT $COUNTARUS $sUcKSEMI BUTFI$ST 1LXST: :C
**TR:

40 SADDERROR "BAD,.ARGUMENT"
50 OUTPUT
END

[18]

TO $DEFINEDP :NAME: ;IS :NAME: CURRENTLY DEFINED ?;
6 MAKE "NiiiE" THING SENTENCE "STRUC" :NAME:
20 IF EITHER EMPTYP :NAME: IS LAST :NAME: "ERASE" OUTPUT "FALSE"
30 OUTPUT "IRUE"
END

[19]

TO SPARSBEDIT ;USED BY 1STARTLINE FOR ALL EDIT COMMANDS;
10 TEST IS FIRST :CURRENT LINE: "LINE"
20 IFTRUE ikLEDII
30 IFTRUE .i0P
33 TEST IS :CURRENT LINE: "TITLE"
36 IFTPUE $pit.DIT
38 IFTRUE TOP
40 TEST IS COUNT :CURRENT LINE: 1

50 IFFALSE $AUDERPOI, "EXTRAftARG.IN.EDIT"
60 IFFALSE STOP
70 TEST BCTH $DEFINEDP FIRST :CURRENT LIVE: EMPiYP =CURRENT PROci
80 IFFALSE 1ADDERROR "BADEDIT"
90 IFTRUE !wt., "CURRENT ',Roc" FIRST :CURRENT LINE:
END

2-13

Report No. 2625 Bolt Beranek and Newman Inc.

[20]

TO $FTEDIT ;TITLE EDIT-IGNORE THIS COMMAND AND PRECEDE NEX.e LINE WITH "T

0 TZST EMP,YP HUTFIRET :CURRENT LINE:
20 XFFALSE 1ADDERROR "BAD.TITLE-RDIT"
30 IFFALSE !..701)
40 SADDERROR "It2NOR"
50 It NOT $RUBOUTP :DRIBBLE NO: MAKE SENIE:IcE SUM :DRIBBLE No: 1 "N" SEN

s*TENCE "TIILE" THING SENTENCE SUM :

**DRIL$BLP NO: 1 "N"
END

21

TO SPLEDIT ;LINE ED/T,,PUTS EDITTING COMMANDS UN LINZ FOLLOWING AS COMMEN
**TS AT END OF PRESENT LINE FOR HAND
** INSERTION BY USER;

0 IGNORE SCHECKLINE
30 IF $RUEOUTP :DRIBBLE NO: STOP
40 $ADD SENTENCE ";" THING SENTENCE SUM r.rRIBBLe NO: "N" SENTENCE :DRIBB

**LE NO: "N"
50 $ADD SEN'T'ENCE SUM :DRIBBLE NO; 1 "D" "IGNORE"
END

[22

TO SPARSEEND USED BY SSTARTLINE FOR THE END COMMAND;
10 TEST EMP,YP :CURRENT LINE:
20 XFFALSE 1ADDERROR "EXTRAIN-END"
30 IFFALSE STOP
40 T;;ST EMP,YP :COPRENT PROC:
SO IFTRUE $ADDERROR "SUPERFLUOUS-END"
60 11;tKE 'CURRENT PR)C" :EMPTY:
END

[23]

TO SPARSEERAse ;USED BY TSTARTLINE FOR ALL ERASE COMMANDS;
0 TEST IS kIRST :CUREE:iT LINE; "LINL"

20 IFTRUE $PLERASE
30 IFTRUE :i0P
33 TEST IS FIRST :CURRENT LINE: "ALL"
36 IFTRUE IPARSEERAL
38 IFTRUE COP
40 TEST IS COUNT :CURRENT LINE: 1

50 IFFALSE 1ADDERROR "BADERASE"
60 IFFALSE STOP
70 TEST IDEtIMEDP FIRST :CURRENT LINE:
80 IFFALSE 14,DDLIIROR "NOTHING-TO-ERASE"
90 IFFALSE STOP
00 IF IS "CURRENT PPOC" FIRST :CURReNT LIdE: MAKE "CURRENT PROC" :EMPTY

.1k SERASEPR :CURRENT LINE:
END

2-14

Report No. 2625 Bolt Beranek and Newman Inc.

[24]

TO SPLERASE ;HANDLES ERASE LINE;
0 IF NOT icHECKL/01 STOP
40 IF SGOCIDPARSEP :DRIBBLE NO: $ADD SENTENCE "SiEUC" :CURRENT PROD: SENT

**ENcE :DRIBBLE NO: WORD "-" LAST :C
**URRENT LINE:

END

[25]

TO SCHECKLINE ;CHECKS VALIDITY OF LINE BEING CALLED FOR ALTERATION OR ER
**ASURE;

,0 TEST BOTH NUMBERP FIRST SUTFIRST :CURRENT LINE: EMPTYP BUTEIRST BUTFT
**Rs: :CURRENT LINE:

20 IFTRUE $AuDEshoR "NOT-DEFINING"
25 IFTRUE OUTPUT "FALSE"
30 TEST EMPIP :CURRENT PROCEDURE:
40 IFTRUE $ADVERROR "Nor DEFINING"
50 'Min; OUTPUT "FALSE"
60 TEST $MP LAST :CURRENT LINE: THING SENTENCE "STRUC" :CURRENT PROC:
70 IFTRUE SAN:ERROR "NO -SUCH. -LINE"
80 IFTRUE OUTPU" "FALSE"
90 OUTPUT ",RUE"
END

[26]

TO SPARSEERAL :HANDLES ALL ERASE ALLS;
0 MAKE "CURRENT LINE" BUTFIRST :CURRENT LINE:
20 TEST EITHER EMPTYP :CURRENT LINE: EITHER IS :CURRENT LINE: "PRS" IS :

**CURRENT LINE: "PROCEDURES"
30 IFTRUE MAKE: "CURRENT PROC" :EMPTY:
35 IFTRUE MAKE SENTENCE :DRIBBLE NO: "N" "$ERASEALL"
40 IFTRUE $PARSEERALL :FINAL CONTENTS:
45 IFTRUE
50 IF IS :CURRENT LINE: "TRACES" STOP
60 TEST IS :CURRENT LINE: "NAMES"
70 IFTRUE IAN:ERROR "NOT-CURRENT"
80 IFTRUE 10P
90 SADDEREOR "BADeERASE-ALL"
END

[27]

TO SPARSEERALL :LIST: ;HANDLES ERASE ALL;
---0--TF--Ewntri :LIST: STOP
20 IF SDEFIN:;DP FIRST :LIST: $ERASEPR FIRST :LIST;
30 SPARSEERALL BUTFIRST BUTFIRST BUTFIRS: :LIST:
END

2-15

Report No. 2625 Bolt Beranek and Newman Inc.

[28)

TO $ERASUR. :NAME: ;HANDLES ERASE :NAME;;
,0 $ADD SENTFAcE "STRUc" :NAME: SENTENCE :DRIBBLE N01 "ERASE"
20 SADD "FINAL CONTENTS" SENTENC1S ;NAME: :DRIEELE NO: "EHASEIr
END

[29]

TO $PTITLE ;HANDLES TITLE COMMAND;
;0 TEST IS FIRST :CURRENT LINE: "TO"
20 IFTRUE $CHANGETITLE FIRST BUTFIRST :CURRENT LINE: EUTFIRST BUTFIRST I

**CURRENT LINE:
30 IFFALSE $ADDERROR "BAD..TIT4E.cOMMAND"
END

[30]

TO $CHANGE2ITLE :NAME: ;DOES WORK FOR $PTITLE;
0 TEST IS :NOE: :CURRENT PROCEDURE:

20 IFFAL,SE ICHECKNAMB :NAME:
30 IFFALSE '..EST NOT $GOODPARSEP :DRIBBLE NO:
40 IFFALSE $ADD SENTENCE "STRUC" ;NAME: 'THING SENTENCE "STRUC" :CURRENT

**PROC:
50 SSTARTDEF :NAME: $COUNTARGS :ARGLIST: c

END

[31)

TO SCLEANUP ;CLEANS UP AT END OF PARSING;
'0 PRINT "PARSING COMPLETED, SAVE THE DRIBBLE FILE,"
20 MAKE "DRIBBLE NO" 0
30 DO "ERA4L ALL PROCEDURES"
END

UTILITY PROCEDURES

TO $SUCKALLs:MIS :LINE: ;REMOVES ALL PAIRS OF SEMICOLONS AND THEIR CONTE
**NTS FROM :LINE:;

0 IF NOT IS FIRST :LINE: ";" OUTPUT :LINE:
20 OUTPUT $sUcKALLSEMIS $SUCKSEMI BUTFIRST :LINE:
END

2-16

Report No. 2625 Bolt Beranek and Newman Inc.

TO SsUcKsemi :LINE: ;UTILITY, SUCKS UP CON'TEN'TS Ok SEMICOLONS;
0 IF EITHEe :LINE: IS FIRST :LINE: ";" oUTPUT BUTFIRST
20 OUTPUT SsUcKseMI HUTFIRST :LINE:
END

TO $BUTLTINP :NAME: ;UTILITY, IS :NAME: A BUILTiNt;
,0 IF EMPTYP THING SENTENCE "BP" INAME: OUTPUT "FALSE"
20 OUTPUT "JBuE"
END

TO $SUcKQUOrE :LINE: ;UTILITY, SUCKS UP CONTENT: or A PAIR or QUOTES;
0 TEST EMPAIP :LIN7:
20 IFTRUE SADDERRoR "MATCHING.QuoTE
30 IFTRUE OUTPUT :EMPTY:
40 IF NOT IS rrilsr :LINE: :QUOTE: OUTPUT $SUCKQUOTE BUTFIRST :LINE:
50 OUTPUT BUTFIRST :LINE:
END

TO $SUCKDOTS :LINE: ;UTILITY, SUCKS UP CONTENTS OF A PAIR Or COLONS;
.0 TEST IS kIKST :LINE: ":"
20 IFTRUE SADVEHROR "EMPTY.NAMEH
30 IFTRUE OUTPUT :EMPTY:
40 OUTPUT $SUCKDOTS1 BUTFIRST :LINE:
END

TO SADDSTRUc :EL: ;UTILITY, ADDS IELI TO SET OF STRUCTURE ELEMENTS BELON
* *GIN(; TO "(DRIBBLE NO) C";

.0 IF NOT EMPaYP :CURRENT PROC: MAKE SEN,.EitCE :DRIBBLE NOI "C" SENTENCE
**THING SENTENCE :DRIBBLE NO: "C" :E

END

TO SGOODPARSEP :N: ;UTILITY, DOES DRIBBLE LINE :N! HAVE ANY PARSING ERRO
**RS?;

0 OUTPUT EMPTYP THING SENTENCE :UI "D"
END

TO SsUcKDo:si :LINE: ;USED 8Y SUCKDOTS;
0 TEST EMPI1P
20 IFTRUE $ADDERRCR "dATCHING9DoTS"
30 IFTRUE OUTPUT :EMPTY:
40 IF NOT IS FIRST IL16E: ":" OUTPUT $SUcKDoTS1 BUTFIRST 11,114E:
50 OUTPUT BUTFIRST :LINE:
END

2-17

Report No. 2625 Bolt Beranek and Newman Inc,

TO PIP :THING: :LIST: ;UTILITY, IS :THING: AN ELEMENT OF ILIST:?)
0 T'ST EMP.Y? :LIST:
20 IFTRUE OUTPUT "FUSE"
30 IF 15 r.H.,NG; FIRST :LIST: OUTPUT "TRUE"
u0 OUTPUT $61) :1HING: BUTfIRST :LIST:
END

TO $i,DDERROR :MES: ;UTILITY, ADDS :MES: AS "ERROR" IE TO VALUE OF "(DRIB
**BLE NO) D

0 $ADD SEN.ENCE :DRIBBLE NO: "D" IMES:
END

TO SADD :PLACE: :LIES: ;UTILITY, CONCATENATES :MES: WITH CURRENT VALUE OF
** :PLACE:)

10 MAKE :PLACE: SENTENCE THING :PLACE: :MES:
END

TO $ADDSYSC :mES: ;ADDS COMMENT TO CURRENT DRIBBLE FILE LINE (To VARIABL
**E "(DRIBBLE NO) R");

0 $ADD SMENCE :DRIBBLE NO: "B" :MES:
END

TO SVUBOUTP : ;UTILITY, WAS LINE FOLLOWING :N: RUBBED OUT NEEDED FOR
**MULTILINE COMMANDS SUCH AS EDT, MA
**NE ETC;

0 OUTPUT CMS "RUBOUT" THING SENTENCE :N: "A"

END

2-18

Report No. 2625 Bolt Beranek and Newman Inc.

USER'-DEFINABLE PROCEDURES

TO $ZXAMINEL :EMPTY PROCEDURE DEFINABLE hY USER (SEE USERS GUIDE). FILL
**ED 0 HOE TO CORRESPOND TO SET OF
.* EXAMPLES,;

.0 I' NOT IS FIRST :CURRENT LINE: :CURRENT pRoC: STOP
20 IF NOT SIIP "RECURSIVE;" THING SENTENCE :DRIBBLE NO: "h" $ADD SENTENCE

s*IDR4BBLE NO: "B" "RECURSIVE"
END

TO SUSEUpEL ;EcipTY,USER DEFINABLE PROCEDURE. SEE; USERS GUIDE FOR APPLICA
s*TIONS,;

10 OUTPUT "FALSE"
END

TO SEXAHINEEINE ;EMPTY,USER DEFINABLE PROCEDURE DESCRIBED IN USERS GUIDE
**;

END

TO SUSEUPLINE JEtIPTY, USER DEFINABLE PROCEDURE DESRCIBED IN USERS GUIDE;
710TriTiTf"ViLs1;"
END

TO $ENDLINE ;EMPTYpUSER DEFINABLE PROCEDURE DESCRIBED II USERS GUIDE;
END

2-19

Report No. 2625 Bolt Beranek and Newman Inc.

5. Running

The general procedure structure is again described in the

User's Guide. The annotated listings here separate rather neatly

into two parts: the graphics part, all subprocedures of $DISPLAY,

and the non-graphics, text-oriented commands.

[1]

TO $STARTKUN ;INITIALIZES SYSTEM;
5 ERASE ALL NAMES
.0 TYPE "DRIBBLE FILE:"
20 DO SENTENCE "GET" REQUEST
30 MAKE "DRIBBLE NO" 0
END

[2]

TO $SAVEWORLD ;SAVE CURRENT STATUS OF WORK ON DRIBBLE FILE;
10 SAVE THE WORLD
END

[3]

TO $GETWORLD ;RETRIEVE PREVIOUSLY SAVED WORK STATUS;
.0 ERASE ALL NAMES
20 ERASE ALL ABBREVIATIONS
30 PRINT "TYPE: GET THE WORLD"
40 ERASE ALL PROCEDURES
END

[4]

TO $DOLINE ;DISPLAYS AND EXECUTES ONE DRIBBLE LINE;
5 MAKE "DRIBBLE NO" SUM :DRIBBLE NO: 1

0 TZST lUOODVARSEI :DRIBBLE NO:
1 IF NOT $SHOWLIVEP IFTRUE 1DISP :DRIBBLE NO:
12 IF NOT IAIXCLP STOP ELSE IFFALSE STOP
5 MAKE " CURRENT PROCEDURE" FIRST THING seNTENCt. :DRIBBLE NO: "C"
20 IF NOT EMPIYP THING SENTENCE :DRIBBLE NO: "C" MAKE SENTENCE SENTENCE

* *''GRAPH" :CURRENT PROCEDURE: FIRST
41*BuTkIRST THING SENTENCE :DRIBBLE N
0+0: "C" BUTFIRST BUTFIRST THING SEN
s*TENCE :VRIBbLE NO: "C"

35 DO THING SENTENCE :DRIBBLE NO: "N"
40 IF NOT EITHER $SHOWLINEP EMPTYP :CURRENT pROcEDDRE: $GOODLIST :cURNEN

**T PROCEDURE: AND - 500 AND . 500
END

2-20

Report No, 2625 Bolt Beranek and Newman Inc.

[5]

TO SpOlp :NUN: ;EXECUTES DRIBBLE LINES TO LINe NUMBERED :SUMS;
$DOLINE

30 IF GREA;:;RP SUM :DRIBBLE NO 1 :NUM: STOP
40 IF TEOF STOP
50 $DOTO
END

[6]

TO $DOUNTI: :DESCR: ;EXECUTE URIBBLE LINES UN'IXL :DESCR: IS FOUND IN A C
**OMMENT lAu;

10 $DOLINE
30 X1 EI'T'HER $DESCP :DESCR: : DRIBBLE NO: SEOF STOP
50 $DOUN:IL ;DESCR:
END

[7]

TO $DOALL ;LXECUTE ENTIRE DRIBBLE FILE, STARTING AT CURRENT POSITION;
10 $DOLINE
30 IF $EoF STOP
40 MALL
END

[8]

TO SWHER OIVES STATUS Or USER;
,0 PRINT SENTENCE "AT DRIBBLE LINE" :DRIBBLE NO:
5 PRINT "#n#WwHICH IS"
20 PRINT THINS milrucE :DRIBBLE NO: "N"
30 PRINT SENTENCE SENTENCE "THE PROCEDURES" $UPTOX,INE :FINAL CONTENTS: "

**HAVE BEEN DEFINED"
END

[9]

TO $ALLDESCR ;GIVES LIST OF ALL COMMENTS IN DRIBBLE FILE 4 IE VALUES OF
**"(N) D";

tel PRINT $ALLDESCR1 1

END

[10]

TO $ALLDESCH1 :N: ;USED BY $ALLDESCR;
i0 IF EMPTYP THING SENTENCE :N: "N" OUTPUT :EMP'T'Y:
20 OUTPUT $UNION (SENTENCES THING SENIENCZ :N; "S") (SENTENCES $ALLDE

**SCR) SUM :NI 1)

END

2-21

Report No. 2625 Bolt Beranek and Newman Inc.

[11]

TO SsTEPpRocLouRE :pRocNA0E: ;STEPS THROUGH SUCCESSIVE VERSIONS OF DEfIN
**ITION oe :PROCNAME; ACROSS ENIIAE
**DRIsBLE FILE;

0 $STEPTH:olkiM :EMPTY: THING SENTENCE "STRUC" :PROCNAME:
END

[12)

TO' $sTEpTHLOUGh :LISTONE% :LISTTWO: ;MAIN SUBPROCEDURE OF STEPPROCEDURE;
0 IF EMPTY? :LISTTWO: STOP
20 MAKE "LIbToVE" SADDALINL SENTENCE FIRST :LislIwo: FIRST BUTFIRST :LIS

**TTWO: :LISTONI1:
30 SPRINTLINT :LISTONE: FIRST :LXSTTWO:
35 IGNORL R. QUEST

$STEPTHROUGH :LISTONE: BUTFIRST' BUTFIRST :LISTTWO:
END

[13]

TO SADDALIN1 :LINE PAIR: :CURRENT LIST: ;USED BY $STEPPROCEDURE TO PUT N
**EW LINE :LINE PAIRS INTO :CURRENT
**LIST: WHICH IS PREVIOUS STAGE;

IF %MPU1P :CoAaENT LIST: OUTPUT :LINE PAIR:
3 IF IS FIlisT BUTFIRST :LINE PAIR: "ERASE" OU,CPUT :EMPTY:
6 IF IS FIRST. BUTFIRST :LINE PAIR: OU'T'PUT %DELETE BUTFIRST FIR

**ST BUTFIRST :LINE PAIR; :CURRENT L
**/STI

0 IF IS FIRST :5UTEIPST :LINE PAIR: FIRST BUTY1NST :CURRENT LIST: OUTPUT
** SENTENCE :LINE PAIR: BUTFIRST BU
**TFIHST :CURRENT LIST:

20 IF GREATHP FIRST BUTFIRST :CURRENT LIST: FIRST BUTFIRST :LINE PAIR:
**OUTPUT SENTENCE :LINE PAIR: :CURRE
**NT LIST:

30 OUTPUT ..,NTENCE SENTENCF FIRST :CURRENT LIST: FIRST BUTFIRST : CURRENT
** LIST: $ADDALINE :LINE PAIR: MUIFI
**RS1 BUTFIRST :CURRENT LIST:

END

[14)

TO SPRiNTLIST :LIST: :CURRENT LINE:)PRINTS EACH STAGE OF $STEPPROCEDURE

0 IF EMPTYP :LIST: STOP
5 IF IS FIRST :LIST: :CURRENT LINE: TYPE "==>"

20 PRINT THING SENTENCE FIRST :LIST: "N"
30 SPRINTLIsT BUTFIRST BUTFIRST :LIST: : CURRENT LINE:
END

2-22

Report No, 2625 Bolt Beranek and Newman Inc,

[15]

TO $FINDL1N $:pROK: :DESCRIPTOR! ;FINDS ALL UCQURRENCES OF :DESCRIPTOR:
** IN COMMENT TAGS STARTING AT LINE
** :FROM:;

0 IF EMPlYP 'THING SENTENCE :FROM: "N" STOP
20 IF $DZSCP :OeSCNIPTOR: :FROM: PRINT SENTLNcES :DLScRIPTORI "IN" :FROM

*43 "0--" THING (SENTENCE 'FROM: "N
*so)

30 SFXNDLIB.s :rBoN:4-1) :DESCRIPTOR:
END

[16]

TO $UP1'OL1N, :LIST: ;COMPUTES THAT PART or :FINAL CONTENTS: WHICH HAS BE
**EN DEFINEu AS OF :DBIBLE NO :;

i0 IF EMPTY? :LIST: OUTPUT :EMPTY:
20 IF GREATLRP LAST BUTLAST :LIST: :DRIBBLE NUS OUTPUT $UP1ULINE BUTLAST

** BUTLAST BUTLAST :LIST:
30 IF IS LAST :LIST: "ERASE" OUTPUT $REMOVE LAST BUTLAST BUTLAST :LIST:

**$UP2OLINE BUTLAST BU1LAST BUTLAST
**:LIST:

40 OUTPUT ,HTENCE SUPTOLINE BUTLAST BUTLAST BUTLAST :LIST: LAST BUTLAST
** BUTLAST :LIST:

END

[17]

TO $GOODLI,1 :NAME: :XI :Y: ;PRINTS PROCEDURE DEFINITION IN SMALL LETTER
**S ON LOWER LEFT or DISPLAY, USED T
**0 SdOW CURRENT STATUS OF PROCEDURE
us DM

3 WIPE
6 MESSAGE "0 0"
10 SGOODLI i :NAME: LINES :NAME: :XI :Y:
END

[18]

TO $GOODLI /1 :NAME: :LL: :X: SY: ;COMPUTES POSITION OF FIRST LINE FOR $
**000DLISI4

r0 Sc00oLt....2 :NAME: :LL: :X: SUB III SUM 12 PRODUCT 12 $COUNTT
END

[19]

to Sc000Li ,2 :NAME: :LL: :X: :Y: ;DISPLAYS TITLE LINE FOR $GOODL/ST;
0 MLSSAGE :arEUCE :x: sun :Y: 12 BUrFIRsi' ibXi :HAKE: 0
20 $GOODLI A :NAME: ILL: :X: IY:
END

2-23

Report No, 2625 Bolt Beranek and Newman Inc.

[20]

TO $GOODL1 .3 :NAME: :LL' X y ;PRINTS LINES OF :NAMES: FOR $GOODLIST
*4:

,0 TEST CMP.YP :LL:
20 IFTRUE N.SSAGE SrNTENCE :X: :YI "END"
30 IFTRUE ,,3P
40 MESSAGE SENTEECF X Y TEXT INANE: FIRST :LL:
50 $GOODLI. 3 %NOE: BUTFIRST ILLI :X: DIFFERLNeE 1Y: 12
END

GRAPHICS

[21]

TO $DISPLAY :HOOT: ;MAIN DISPLAY PROCEDURE;
0 $MAKEALL6HAPHS
20 $NEWRO :HoOr:
END

[22]

TO $NAKEALLGRAPHS ;GLNERATES A COMPLETE SET 01, cURWAT PROCEDURE CONNECT
**IONS;

5 SEMPTYGIlt,PHS i;UPIOLINE :FINAL CONTENTS:
i0 $MAKEGRAPH1 $LIPTOLINE :FINAL CONTENTS:
END

[23]

TO $):MPTy6RApHS :LIST: ;EmpTIES ALL VARIABLES 01 FORM "GRAPH (PNAME)" AN
**D "GRAPHT (PNAME)" AS PART OF INIT
**IALIZATION OF DISPLAY;

10 IF EMPTYP :LIST: STOP
5 MAKE SE::.ENCE "GRAPH" FIRST :LIST: :EMPTY:

20 MAKE sr_ENOE "GRAPHT" FIRST :LIST: :EMPTY:
30 $LMPTYGaAPHS EHTF/RsT :LIST:
END

[24]

TO $NAKEGPAPH1 :LIS .

IF EMPTYP :LIST: STOP
5 MAKI', "LI ." SENTLNCE :LIST: :EMPTY:
20 MhKE SEN.ENCE "GRAPH" FIRST :LIST, $MAKEGRAPH FIRST :LIST: LINES FIRS

**T
30 $MAKEGRARH1 aUTFIRST :LIST:
END

2-24

Report No. 2625 Bolt Beranek and Newman Inc.

[25)

/0 SMAKEGRAVH :NAME: :LINE LIST: ;USED BY SMAKEGRAPH1 TO CREATE "GRAPH (

**PNAME;" VARIABLE;
0 IF EMPTYP :LINE LIST: OUTPUT :EMPTY:
20 OUTPUT iUNION THING SENIENCE SENTIACE "GRAPH" :NAME: FIRST :LINE LIST

IMAKEGRAi,H :NiME: HUTkIRST :LINE
* LIST:

END

[26)

TO SNEWM: :HOGT: ;GENERATES NEW DISPLAY STARTING AT :ROOT:f
2 PENUP
5 WIPE
7 MAKE "DI PLAY LIST" :EMPTY:
0 $CTREE :hocT:
20 $MAKELE'.Ls :ROOT:
30 $DRAwLE.:,L 1 :LEVEL 1: 0

40 $JOINLE,),Ls :MARKED LIST:
END

[27)

TO sscrRE2 :no0T: ;$cTREE THROUGH $cTREF6 CREATES ThAT LIST OF PROCEDURE
*CONNECTIONS ACTUALLY JOINED TO :RO

**OT:i
5 MAKE "11;111) LI5-." SENTENCE : ROOT: : EMPTY:
0 SCTREL1 bENTI..:NC:.S :ROOT:

END

[28)

TO SCTREE1 :R:
,0 TI.ST EMP3Y1, :R:
20 IFTRUE -':'OP
30 $CTRE22 FIRST :R: BUTFIRST :R:
END

[29)

TO SCTREE2 :R: :S:
20 SCTREE3 :R: (SENTENCES THING SENTENCE "GRAPH" :R:) IS:
END

[30]

TO SCTREE3 :R: :SUC: :S:
0 TEST EMPAYP .SUC

20 IFTRUE $CTHEil ti:
30 IFTRUE .LOP
40 SCTREE4 :n: FIRST :SUC: BUTFIRST :SUC: :S:
END

2-25

Report No. 2625 Bolt Beranek and Newman Inc.

[31]

TO SCTREE4 :R: :FSUC: :RSUC: :Si
krTEST THEN5 :FSUC:
20 IFFALSL MAKE SENTENCE "GRAPHT" :R! SENTENCE THING SENTENCE "GRAPHT"

IFSUCI
25 IFTRUE $cIeEL3 :8: 1Rsuc: IS:
26 IFFALSE OAK:: "NAliKED LIST" SENTENCE :MARKED LIST! IFSUCI
30 Must; $cTREg3 :R: :Rsuc: SENTENCE :Ftic: IS!
END

[32]

TO SCTREE5 :X:
0 OUTPUT $CTREE6 :X: :MASKED LISTS

END

[33]

TO SCTRE1 :X: :L:
10 TLSI ,;(1,11,YP :L:
20 IFTRUE OUTPUT "FUSE"
30 T;ST ,TS :X: :L:
40 /FTRUL OUTPUT ruun"
50 OUTPUT iCIREE6 :X: 13UTFIRST
END

4341

TO SMAKELp-LS. 1ROOTPROC: ;CREATES THE LEVEL LISTS roR DISPLAY, EACH LEV
**EL SEING A LIST OF PNAMES WITH COO
**RDINATES :ROOT: IS LEVEL 1)

10 SZEROLEVL
,5 MAKE "LEVEL 1" SENTENCE SENTENCE . 42 !ROOTPROC: 42
20 SMAKELE7i:L 2 0 THING SENTENCE "GHAPHT":1100TPROC:
END

[35]

TO SZEROLEV_L :N: ;EMPTIES ALL VARIABLES OF FORM "LEVEL (10")
,0 IF EMPTYP THING SENTENCE "LEVEL" !M: STOP
20 MAKE SENTENCE ',LEVEL" :N: !EMPTY:
30 SZEROLE: L (:N:+1)

END

2-26

TO

Report No. 2625

[36]

$MAKELEr_L :LEVEL NUM:

Bolt Beranek and Newman Inc.

:PIVOT: :L/ST: ;CREATES LEVEL LISTS FOR SMAKEL
**EVELS:

0 IF EMPTY? :LIST: STOP
20 MIKE "LIST" seurrNoc ($NEAREsTHOLE 0 THING SENTENCE "LEVEL" :LEVEL N

**LIU: :PIV0/1) :LIST:
30 MKE SENLENcE "LEVEL" :LEVEL NUM: SEW,ENCE SENTENCE SENTENCE THING SE

**NTENCE "LEVEL" :LEVEL NUM: (FIRST
** :LIST:) 0 42 $NOTE kIRST BUTFIRS
**T :LIST: (FIRST :LIST:) 42

40 SMAKE%El, L (:LEVEL NUM:+1) FIRST :LIST: 'THING SENTENCE "GRAPHT" FIR
**ST bUTFIRST :LisT:

50 SMAKELE:A, :LEVEL NUM: :PIVOT: BUTFIRST BUTFIRST :LISTI
END

[37]

TO $NEARESTHOLS :X: :LIST: :PIVOT; ;USED BY SMAKELEVEL TO FIND GAPS BETW
* *FEN BOXES ALREADY DEFINED, ON :LIS
**T:, PIVOT IS CENTER;

i0 IF EMPTY? :LIST: OUTPUT (:PIVO' :.20)

20 Tr.ST Nt I 1,INSIDEP (:PIVOT:+:X$-42) (:PIY0r1+:X:+42) :LIST:
30 IFTRUE OUTPUT :pxvor:+tx:
40 Tk,ST NOT $IHSI(EP (:PIVOT:-:X1042) (:pIVO1'fz:X:+42) :LIST:
50 IFTRUE OUTPUT
60 OUTPUT $N4A8ESTHOLE :X:+7 :LIST: :PIVOT:
END

[38]

TO $INSXDEP :A: :B: :LIST: ;USED BY $NEARESTHOLE TO CHECK OVERLAP;
10 IF EMPTY? :Iasi': OUTPUT "FALSE"
20 IF EITHER $HETW4EHP :At :B: FIRST :LIST: $BETWEENP :At 2132 FIRST BUTT

**xRsT BUTFIRST :L/STI OUTPUT "TRUE"
30 OUTPUT SiNsIDEP IA: :BI BUTFIRST BUTFIRST BU1FIRST :LIST:
END

[39]

TO SBETWEENP 'A' 'B' 'TEST:)IS :TEST: BETWEEN :A: AND :81?)
5 IF EITHER Is :Al 'TEST: IS :B. :TES TI oUlpUi "TR0r,"
0 OUTPUT EITHER BOTH GREATER? :A: :TEST: GREATER? :TEST: :b: BOTH GREAT

**Epp :B: :'PEST(GREATEHP :TEST: :A:
END

2-27

Report No 2G25 Bolt Beranek and Newman Inc.

[40]

TO $DRAWLE$..1. :N: :LIST: :VERT: ,DOES POSITIONAL COMPUTATION AND ACTUAL
**DRAWING 01, BOXES ON EACH LEVEL OF
*DISPLAY)

0 IF VIIPTYP THING SENIFNCE "Lem" :N: STOP
20 TtSI EMP.IP :LIST:
30 IFTRUE $011AWLEveL :N:*1 THING SENTENCE "LEVEL" (:N:+1) ;VERT: ($

**MAXHEIGHT THING SENTENCE "LEVEL"
41*N:) - 40

40 /FTRUZ 10P
50 $BOXIN riRsr BUTFIRST :LIST: (FIRST :LIST%) + 12 :VERT:
55 MAKE "'DISPLAY LIST" SENTENCES :DISPLAY LIST: (FIRST BUTFIRST :LIST:

**) :N: (FIRST :LIST:) + 42 :VERT:
** (FIRST :LIST:) + 42 ;VERT: - $H
**EIGHT FIRST BUTFIRST :LIST:

60 $DRAWLE7.L BUTFIRST BUTFIRST BUTFIRST :LIST: IVERT1
END

[41]

TO $MAXHE1GHT :LIST:)COMPUTES mAxinun HEIGHT or THE BOXES GIVEN BY :LIS
**T:i

5 IF EMPTY? :LIST: OUTPUT 0
i0 OUTPUT MAXIMUM (St:EIGHT FIRST BUTFIRST :LISr%) SMAKHEIGHT BUTFIRST

**BUTIIRST bUTFIRST
END

[42]

TO $HEIGHT :STRING: ;COMPUTES HEIGHT OF l'EXT GIVEN 8 CHARACTER WIDTH;
0 OUTPUT 2 * (((COUNT :STRING:) 4 7) / 8) r. 5

END

J43]

TO $BOXIN :NAmE: :uPPERLHX: :UPPERLHY: ;BOXES IN :NAME: GIVEN COORDS OF
**UPPER LEFI HAND CORNER)

0 MOVE SEN,ENCE :UPPERLHX:n3 :UPPERLHY:+3
20 P%NDOWN
30 MOVE SENfENCE tUPPE.RLHX:+63 1UPPERLHT:+3
40 MOVE SENTENCE :UPPERLHX:+63 :UPPERLHY: ($HE1GHT :NAME:) 9
50 MOVE SENiENCE :UPPERLHX:-3 :UPPERLHY: T ($HEIGHT :NAME:) - 9
60 MOVE SEL2ENCE tUPPERLHX:-3 :UPPERLHY:+3
70 $ENCLOSEMLS :NAME: :UPPERLHX:+4 :UPPERLHY:-9
80 PENUP
END

2-28

Report No. 2625 Bolt Beranek and Newman Inc.

[44]

TO $:,NcLosrm:b :NAME' ,x"1, ;PUTS ILL SSAUE IN boX;
0 TLST GCLATtRP 8 COUNr :NAME:
3 IF:RUE $(1:14TER :NAME' 'X"Io
6 IFTRUI:
20 LSSAUE Scr.,14E41-' eX Y SPULL 8 :NAMES
30 $,ACLOSEML0 $DELETE, 8 :NAME; :X: :Y:-12
END

[45]

TO SCENTLP :EAME"X' Y ;USED BY $LNCLOSEMES 10 CENTER TEXT;
friF-E-iiTTYP :NAME: STOP

20 mESsAck, SENTENCE SUM :X: (7 * (8 COURT :NAMES)) / L IYI :NAME:
END

[46]

TO SJOINLL, LS :LIST: ;JOINS DISPLAYED BOXES. III:HATES THROUGH LEVELS;
,0 IF EMFTYP :LIST: STOP
20 $JOINLIN.S FIRST :LIST: THING SENle,NCE "GRAPH" FIRST tLIST:
30 $JOINLE;_LS BUTFIRST :LIST:
END

[47]

TO $JOINLINI..S :NAM: :LIST: ;DRAMS COENECTIONS B1;TWE0 BOXES, ITERATES TH
**ROUGH ELEmENTS;

;0 IF EMPTYP :LIST: STOP
20 $JOIN :NAM: FIRST :LIST:
30 $JOINLIN.S :NAM: BUTFIRST :LIST:
END

[48]

TO $JOIN :A: :3: ;CONNECTS BOX :A: AND BOX :B: WITH ARC OR ARROW;
1 IF IS :A: :0: STOP
3 MAKE "A" icoO8D :A: :DISPLAY LIST;
6 KW "B" SCOORD :B: :DISPLAY LIST:
0 T,':ST IS riRsT :A: FIRST :B:
20 IFTruE $ARC BUTFIRST :A: BUTFIRST :BI
30 IFTRUE .A0P
U0 $JOINLIEA. :A: :31
END

2-29

Report No, 2625 Bolt Beranek and Newman Inc.

[49)

TO SJOINLIN. :A: :B: ;JOINS BOX :A: AND BOX :6: WITH ARROW)
0 T:ST LL SP FIRST :A: FIRST :B:
20 IFTRUE SURAwLINE BUTFIRST BUTFIRST BUTFIRST' :AI SENTENCE FIRST BUTFIR

**ST :13: FIRST BUTFIRSI BUTFIRST :B:
30 XFTRUE tOY
40 SDRAWLIN., SENTENCE FIRST BUTFIRST :A: FIRST BUTFIRST BUTFIRST IA: BUT

**FIRST BUTFIRST BUTFIRST IBI
END

[50]

TO SERASEALL ;PSEUDO ERASE ALL TO PRESERVE SYSTEM;
i0 SERASEALL1 SENTENCES SUPTOLINE :FINAL coNTEN41
END

[51]

TO SLRASEALL1 :FRS: ;USED BY SERASEALL:
5 IF EMPIYP :PRS: STOP
10 DO SENTENCt. "ERASE" FIRST :Pas:
20 SERASEALEi BuTrxrisT :PRS:
END

UTILITY PROCEDURES

TO SYESP, !ANS: ;;

0 IF IS :Al%S: "Y" OUTPUT "TRUE"
20 IF IS :ANS: "YES,' OUTPUT "TRUE',
30 OUTPUT "FALSE"
END

SSKIP :NI
5 IF ZERO? :N: STOP
0 PRINT ""
20 $SKIP DIFFERENCE :H:
END

TO SDISP :NO: ;PRINTS ()BISBEE LINE : NO :;

0 PRINT SENTENCES miss*" :NO: "***" THING SENTENCE :No:
END

Syr

IWO

TO SADD :PLACE: :NES: ;CONCATENATES VALUE OF :PLACE! AND :MES:;
0 MAKE :PLACE: SENTENCE THING :PLACE: :mes:

END

2-30

Report No. 2625 Bolt Beranek and Newman Inc.

TO $COUNTT :EL: ;COUNT WITH KLUDGX FIX OF BUG IN COUNT 0;
0 IF EiPTYP :EL: OUT'DUT 0 ELSE OUTPUT COUNT :EL:

END

TO $PULL :N: :LIST: ;FIRST :N: OF :LIST::
0 IF ZER0P :N: OUTPUT :FOPTY:
20 OUTPUT WORD FIRST :LIST: $PULL iN:-1 BUTFIRST' :LIST:
END

ToSpE,,ETE. :N: :LIST: :BUTFIRST :14: OF :LIST::
:0 IF :N:r- OUTPUT :LIST:
20 OUTPUT $DELEIL, :N:-1 UUTFIRST :LIFT:
END

TO $MP :EL: :LIsl:
5 MANE "LI 4" SENTENCES
,0 IF EMPTY' :LIST: OUTPUT "FV:SE"
20 IF IS :EL: FIRST :LIST: OUTpri "TRUE"
30 OUTPUT $MP :EL: BUTFIRST :LIST;
END

TO $MINUS :X:
0 IF IS FIRST :A: "'in OUTPUT RUTFIRST :X1
20 OUTPUT WORD nu" :X;
END

TO $cOoRE :PNAME: :LIST: ;FIND COORDINATES OF :PNAMIS: ON LIST OF QUINTU
**PIES;

20 IF IS $NOTE ;PNA:IE: FIRST :LIST: OUTPUT lib sUWIRST :LIST:
30 OUTPUT lcooRD :PNAME: BUTFIRST DUTFIRsT BUTFIRST BUTFIRST BU

s*TFIRST :LIST:
END

TO $F5 :r:
,O OUTFul. SENTEnCJ SENTLNcE sENTE'Ict; FIRST IN: FIRST BUTFIRST :

t*N: uUTFIRST BUrk1RST :N: FIR
oUIFIRsT BUTFIRST BUTFIRST :N:

.0*FIEST BUTtIRST BUTFIRST BUTFIRST B
**UTFiRsT :Ni

END

2-31

Report No. 2625 Bolt Beranek and Newman Inc.

soc :A: :b: ;o8Aws ARC FROM POINT IA: TO HORIZONTAL POINT :B1!
0 $SEMIcINCLL SENTENCE FIRST :AI FIRST buTrIHSI !Al QUOTIENT ((FIRST

**lb:) - FIRST !A:) 2

20 PLNDOWN
30 LEFT 10
40 BACK 15
50 FRONT 15
60 RIGHT 2t.
70 BACK 15
80 PLNUP
END

TO SSEMICIRCLE :PT: :RADIUS:
tO MOVE :WI:
.5 Se.THEADING 90
20 PI3NDowN
30 SREPEAT 13 SENTENCE "FRONT" 10 * $ABS :RADIUSI/38 SENTENCE "RIGHT" (

**SSGN :RADIUS:) * 15

40 PINUP
END

TO $REpEAT :N: :h: :8:
,0 IF ZEROP :N: STOP
20 DO :A:
30 DO :LI:

40 SREPPAT { :N:w1) :A: :B:
END

TO SABS :X:
,0 TEST IS FIRST :X: "."
20 IFTRUE OUTPUT bUTFIRST :X:
30 OUTPUT :A:
END

TO $SON
0 IF IS FIRST :h; ..fl OUTPUT - 1

20 OUTPUT
END

TO $UNTON :LIsToNL: :LISTTWO:
3 MAKE "LI-'10NE" SENTENCES :LISTONE:
6 HAKE SENTENCsS :LISTTNO:
0 IF EMPTY!, :LISTONE: OUTPUT :LISTTWO:

20 IF 1412 FIRST :LISTONE: :LISTTWO: OUTPUT $UNIUN BUTFIRST :LISTONE: :LX
4.*sTrwu:

30 OUTPUT SUNION BUTFIRST :LISTONE: SEN1ENcL FIRST 1LISTONE: :LISTTWO:
END

2-32

Report No.

TO $DRAWL1N._
0 MOVE :
20 P4NDOWN
30 MOVE :8:

L7FT IU
50 Ei:.CK 15

60 FRONT 15
70 RIGHT 2
80 BACK 15
90 PL'NUP
END

2625

:A: :8: ;DRAWS ARROW FROM

Bolt

POINT

Beranek

:A: TO

and Newman Inc.

POINT 113:,

TO $REMOVE :1;L: :LIST: ;STRIPS FRONT OF :1,IST: UP TO AND INCLUDING :EL:;
SENTENcES :LIST:

20 IF IS :EL: FIRST :LIST: OUTPUT BUTFIRST :USIA
30 OUTPUT $REMOvE :ELI BUTFIRST :LIST:
END

TO $DELE1E :EL: :LIST: JPAIRWISE DELETE;
20 IF' I$:EL: FIRST SU1FIRST :LIST: OUTPUT BUTFIRST BUTFIRST :LIST:
30 OUTPUT . NTENCES FIRST :LIST: FiRSr BUTFIRST :LIST: $DEL4TE :EL: BUTF

**IRST BUTFIRST :LIST:
END

TO $DESCP :DESCH: :LINE NO: ;IS DESCRIPTOR :DESCR: IN COMMENT OF :LJNE N
*0:? (IE IN "(LINE NO) 8");

,0 OUTPUT %MP :DESCR: THING SENTENCE :LINE NO: "8"
END

NOJGOODPIEP :NUt': :HAS DRIBBLE LINE :NUM: PARSED CORRErT10Y?:
0 OUTPUT ENItYP TEING SENTENCE :NUM: "D"

END

TO $:20F ;AT END OF DRIBBLE FILE ?;
0 TEST EMP4yP THING SENTENCE :DRIBBLE NO: "N"
20 IFTRUE PRINT "****END-0FrEILE****"
30 IFTRUE OUTPUT "TRUE"
40 OUTPUT "IALSL"
END

2-33

Report No, 2625 Bolt Beranek and Newman Inc.

USER-DEFINABLE PROCEDURES

TO $LOOKAHEAD ;DEFINED IN EXAMPLE TO PERMIT LOOKAHEAD IN DRIBBLE FILE AN
**D MARKING OF IGNORABLE LINES;

0 $1,00KAHEAD1 1

END

TO $LOOKAHEAD1 :N: ;USED BY $LOOKAHEAD,;
0 TYPE wriOHEt..."

20 TEST 1,YESP REQUEST
30 IFFALSE PRINT SENTENCES " *IRESUME AT***" :DRIBBLE NO: ***I'
40 IFFALSE $SK1P 2
50 IFFALSE DO THING SENTENCE :DRIBBLE NO: "N"
60 IFFALSE STOP
70 TYPE %MI"
80 $DISP SUM :DRIBBLE NO: "N"
90 TYPE "IGNORE?,"
00 IF $1E-P REQUEST 1ADD SENTENCE SUM :DRIBBLE NO: IN° "D" "IGNORE"
10 $LOOKAHL,AD1 SUM :N: 1

END

TO $N0TE ;EMPTY,USER DEFINABLE PROCEDURE, HERE FILLED IN AS IN EX
**AMPLE;

10 IF IREcURSEP :PROC: OUTPUT WORD WORD "**" :PHOC: "**"
20 OUTPUT :PROC:
END

TO $REcURSSP :PROC: ;USED DEFINED IN EXAMPLE TO CHECK RECURSIVENESS;
,0 OUIPU1' $4P :PROC: :RECURSIVE Lists
END

TO JSHOWLIg,P
,0 OUIPU1 "FALSE"
END

TO $NICET ;-MPTY, USER DEFINABLE PROCEDURE, HERE PILLED IN AS IN EXAMPLE
,ps, A

0 IF %M? "RECURSIVE" THING SENTENCE :DPIBBLE Nul "B" MAKE "RECURSIVE LI
**ST" SUNION :CURRENT PROCEDURE: :RE
**CURSIVE LIST:

2Z OUTPUT "TRUE"
END

2-34

Report No, 2625 Bolt Beranek and Newman Inc.

6. The Display Facility

To facilitate the display of program structure diagrams, a

display system was implemented on the IMLAC PDS-1 using the IMLAC

executive program. The apparently rather idiosyncratic nomencla-

ture, SETTURTLE for example, arises from the fact that we chose

our primitives to be a superset of the commands controlling our

robot "turtle". (These are described in the Appendix.)

The display screen is considered to be 1024 by 1024 units,

with the origin in the center of the screen. The "turtle" itself

is in the shape of an isosceles triangle whose base is 8 and

altitude is 16. The sharp end of the triangle points toward the

heading of the turtle. Headings are in degrees, from the

horizontal. The position of the turtle is kept to more accuracy

interully than is recorded on the screen. This procedure avoids

undesirable round-off errors.

The turtle also has a "pen" which is initially "up". If the

pen is down, any command that changes the position of the turtle

(except for HOME and the SET commands) will draw a line from the

initial position to the final position.

The following commands change position:

FRONT, BACK, MOVE, SETXY, SETX, SETY, HOME, SETTURTLE.

The following commands change heading:

RIGHT, LEFT, SETHEADING, SETTURTLE.

The following function gives information about the turtle

status:

HERE.

2-35

Report No. 2625 Bolt Beranek and Newman Inc.

6.1 Description of Commands and Functions

FRONT takes one argument: a numerical string. It moves the turtle

forward by the number of units indicated, in the direction

the "turtle" is pointed. If the "pen" is "down", it draws a

line between the initial and final positions.

BACK :X: is the equivalent of FRONT (-:X:).

LEFT takes one argument: a numerical string. It changes the

heading angle of the turtle by adding its argument to the

current heading and reducing modulo 360. The orientation of

the "turtle" (i.e., the vertex of the triangle) is changed

tc, the new heading.

RIGHT :X: is equivalent to LEFT (-:X:).

SETHEADING takes one argument: a numerical string. It.changes

the heading of the turtle (as in LEFT) to the argument

reduced modulo 360, and changes the orientation appropriately.

SETX takes one argument: a numerical string. It changes the

X-coordinate of the turtle to the argument. The orientation

of the turtle is not changed, and no vector is drawn.

SETY behaves like SETX, except that the Y-coordinate is involved.

SETXY takes one argument: a sentence having two numerical words.

It changes the X- and Y-coordinates respectively to the

first and second words, as in SETX.

2-36

Report No. 2625 Bolt Beranek and Nowman Inc.

SETTURTLE takes one argument: a sentence having two three-digit

words. It changes the (X,Y) coordinates of the turtle as

in SETXY, using the first two words, and the heading as in

SETIIEADING using the third word.

HOME is the same as SETTURTLE "0 0 0".

WIPE erases all lines drawn on the display and all messages (see

below) but leaves the turtle in the same position and

orientation as it was before the command was executed.

PENUP "raises the pen". It causes no command to draw a vector

until a PENDOWN command is executed.

PENDOWN "lowers the pen". It causes the commands FRONT, BACK,

and MOVE to draw vectors from the initial to final positions

of the turtle, until a PENUP command is executed.

MOVE takes one argument in identical format and meaning as SETXY.

It causes the same action as SETXY. In addition, it changes

the orientation of the turtle to point in the direction of

motion, and draws a line if the "pen is down".

MESSAGE takes two inputs: the first is a sentence as in SETXY,

indicating a position; the second is a sentence or word

which is interpreted as a string. The characters in the

second argument are displayed horizontally.

HERE has no arguments. It is a function which has a value equal

to a sentence of three words. The first two words represent

the (X, Y) coordinates of the turtle, and the third word

represents the heading of the turtle. In other words, the

output of HERE is in the same format as the input to SETTURTLE.

2-37

Report No. 2625 Bolt Beranek and Newman Inc.

6.2 Specific Implementation on the IMLAC

The IMLAC contains a central processor (similar to a DEC PDP-9)

and a display processor (with long vector drawing) as well as 8K

(of 16-bit words) of memory. The display processor periodically

(60 times per second) refreshes the display by executing a sequence

of vector drawing commands.

The TENEX-IMLAC implementation operates by directly modify-

ing the display program inside the IMLAC.

For other types of display processors, such as storage tubes,

or the PLATO terminal or refresh scopes without a central

processor, a different strategy must be used. For the first two

alternatives, display lists need not be kept. As vectors are

generated, the properly formatted display instru9tions are merely

transmitted t...) the scope. For a storage tube without selective

erase, such as a COMPUTEK, a change should probably be made to

the "turtle indicator", i.e., the small triangle indicating

position and bearing of the turtle. If there is a turtle indica-

tor, there would be "tracks" left on the display, that is,

images of old turtle indicators. The procedure in this case

would be either to eliminate the turtle indication altogether or

to use a programable cursor to indicate position only. If the

storage tube has selective erase, then a turtle indicator can

still be drawn, but must be "remembered" in order to erase

previous indications.

A refresh tube without memory can be handled in much the

same way as the IMLAC, except that the display lists should be

kept inside the main computer.

2-3&

Report No. 2625 Bolt Beranek and Newman Inc.

There are some display processors, such as other models of

the IMLAC, which do not have "long vector" drawing hardware.

More precisely, this means that vectors of arbitrary length

cannot be drawn with one display processor instruction. When

using a processor lacking this capability, additional programs

must be written. These programs will convert a vector specifica-

tion into a series of instructions for the display processors.

Usually the basic display instruction will be able to draw "short

vectors" - vectors whose length is less than 3 or 4 units, where

the entire screen is 1024 units wide.

The IMLAC driving programs used in this project were written

by Victor S. Miller in MACRO, the assembly language of the

PUP -10, The IMLAC programs themselves were also written on the

PPP -10 using an in-house IMLAC assembler.

2-39

Report No. 2625 Bolt Beranek and Newman Inc.

Part 3.

Analysis Package

3-0

Report No. 2625 Bolt Beranek and Newman Inc.

1. Introduction to Analysis Package

The analysis facilities described in the user's guide are

very general and are not customized. We describe here the con-

struction of extended facilities for use in various aspects of

the analysis --, working with student programs directly, augmenting

the system's parsing capabilities, and extending the system's run-

time capabilities. These facilities constitute our analysis

package.

At the outset a teacher or researcher will find the capabil-

ities of the dribble file analysis system very substantial. The

initial command structure and associated semantics will probably

seem reasonable and adequate. Continuing use of the system,

particularly when the use is intense, will likely lead to some

dissatisfaction, both with the command structure and its inter-

pretation. The serious user will want to personalize and extend

the specific information that the parser generates. He will want

to incorporate his own ideas on editing, error correction, and

execution facilities. It is precisely for this reason that the

system was written in LOGO, a relatively simple and accessible,

yet powerful and easily extensible language. In this section we

will discuss possible user extensions of various kinds.

2. User Definition of Analysis Procedures

We first discuss those "advanced" features of LOGO which,

although originally added for work with sophisticated students,

are very valuable in extending the dribble file system. There is

no distinction in LOGO as there is in some programming languages

between system and nonsystem commands. Thus, as a trivial example,

we can erase a set of LOGO procedures in two different ways. We

3-1

Report No. 2625 Bolt Beranek and Newman Inc.

can use the LOGO ERASE, command directly or we can write our own

procedure for erasing a list of procedures given as input:

TO ERASEMANY : LIST:
1p IF EMPTYP :LIST: THEN STOP
20 DO SENTENCE "ERASE" FIRST OF :LIST:
30 ERASEMANY BUTFIRST OF :LIST:
END

Also, instead of defining a new LOGO procedure in the usual way,

we can define a procedure whic4 creates a new procedure:

TO CREATE
10 DO "TO FOO"
20 DO "10 PRINT RANDOM"
30 DO "END"
END

CREATE defines the procedure FOO which simply has the effect

of printing a random digit. The process is carried out as follows.

+CREATE
FOO DEFINED
+LIST FOd

TO FOO
10 PRINT RANDOM
END

The single-input DO command evaluates its input, i.e.,

executes its input as a LOGO instruction line. The use of DO is,

of course, essential in examples like the above where we modify

3-2

Report No. 2625 Bolt Beranek and Newman Inc.

existing LOGO procedures or define new ones. In order to effec-

tively modify procedures, however, we also need to have program

access to their current state. The LOGO built-in operations

LINES and TEXT make this possible. LINES takes one input, which

must be the name of a procedure in the user's workspace, and out-

puts a sentence composed of the line numbers of that procedure.

Using LINES with the procedure CREATE, defined above, for example,

we get:

+PRINT LINES "CREATE"
4 0 10 20 30

(Note the line number 0 which represents the title line.) Given

a procedure name and a line number, one can get the entire content

of the line (including the line number) using the two-input LOGO

operation TEXT. Thus:

+PRINT TEXT "CREATE" 10
1p DO "TO FOO"
+PRINT TEXT "CREATE" 0
TO CREATE

As we will see in the following pages, DO, LINES, and TEXT,

combined with the other LOGO primitives, give a user considerable

power for extension of the dribble file analysis system. We

begin with some simple procedures to augment the basic parsing

capabilities built into the analysis system.

3-3

Report No. 2625 Bolt Beranek and Newman Inc.

3. User Augmentation of the Parsing Procedures

The built-in parsing procedures interpret the student's LOGO

program in very much the way that LOGO itself does. Prom the

standpoint of the analyst, however, this process can be improved

in various ways so as to run more smoothly or to give him addi-

tional information for later phases of the analysis. Examples of

each kind are developed next.

3.1 Putting parenthesis-checking into the parsing procedure

In the current implementation of LOGO, balancing of paren-

theses is not checked as the expression is interpreted. The

execution of an unbalanced expression generates an error comment

and halts the system. Such halts can be annoying when the user

of the analysis system is not interested at the level of detail

of local syntax errors. A suitable comment entered in the dribble

file during the parsing phase can be used to inhibit execution of

such lines as the user sweeps through the dribble file subsequent-

ly. Consistent with our general conventions of usage, such a

comment is entered into the global variable "(dribble file line

no.) B". This is done using the existing one-input procedure

$ADDSYSC :MESSAGE:, together with filling in the empty procedures

designed to make such additions easy. Thus, we use the global

"PAR COUNT" to keep track of depth (its name is a sentence as we

require by convention for all dribble file analysis globals).

"CURRENT LINE" contains what is left of the line being parsed.

We initialize -

TO $EXAMINEL1NE
10 MAKE "PAR COUNT" 0
END

3-4

Report No. 2625 Bolt Beranek and Newman Inc.

We look at each element to see if it is a right or left

parenthesis and, if so, take suitable action:

TO $EXAM1NEEL
10 TEST IS FIRST :CURRENT LINE: "("
20 IFTRUE MAKE "PAR COUNT" SUM OF

:PAR COUNT: AND 1
30 IFTRUE STOP
40 TEST IS FIRST :CURRENT LINE: ")"
50 IFTRUE MAKE "PAR COUNT" DIFF OF :PAR COUNT: AND 1
60 IF GREATERP 0':PAR COUNT:

$ADDSYSC "MATCHING-PARENS"
END

And, finally, to terminate the line being parsed we fill in
$ENDLINE.

TO $ENDLINE
10 IF NOT ZEROP :PAR COUNT:

$ADDSYSC WORDS
"MISSING-" :PAR COUNT: "-PARENS"

END

3.2 Checking for operation vs. command

It is very useful for later analysis, and in fact very easy

during the parsing phase, to generate the specification of

whether a procedure is an operation or a command -- whether it

merely stops or hands back inforyution to the procedure which

called it. We can look for a STOP or an OUTPUT in he procedure
definition. If neither exists, the procedure terminates on the

END command and is a command. This, of course, is not a perfect

algorithm, even within the limits imposed by the halting problem.

The simplest form of (syntactic) ambiguity is between OUTPUTting

and falling through to the END. Also consideruble benefit could

be derived by tracing out GOTOLINE statements (except when their

3-5

Report No. 262S Bolt Beranek and Newman Inc.

arguments are generated at runtime), But, the simplest approach

yields generally satisfactory results for the parsing phase. of

analysis. More complex analyses are best left for the running

phase of dribble file analysis. So, given the type of information

we want to find, where should we put it once we find it? Remember-

ing that the form of a procedure is time-dependent, it seems

necessary to maintain a running record of the state of the

procedure. We define a new. data type "(pname) FORM" to contain

such information for each procedure defined in the dribble file.

At the end of parsing, it might look like

"FOO FORM" IS "137 10 OUTPUT 138 20 STOP 139 10 ERASE"

The value of "FOO FORM" is a set of triples - the dribble

file line number, procedure line number, and the relevant command

contained. This will enable the use of a new procedure in the

running phase to determine the state of any procedure at any

point in the dribble file. It is easy to incorporate in the

parser procedures which generate these names and values. We need

simply define versions of $EXAMINEEL, $EXAMINEL1NE, and $ENDLINE

for this purpose as follows -

TO $EXAMINEEL
10 IF EMPTYP :CURRENT PROC: STOP
20 IF EMPTYP :LINE NO: STOP
30 IF NOT EITHER IS FIRST :CURRENT LINE: "OUTPUT"

IS FIRST :CURRENT LINE: "STOP"
STOP

40 $ADD "CURRENT FORM" SENTENCES
:DRIBBLE NO:
:LINE NO:
FIRST :CURRENT LINE:

END

where we are using :LINE NO: to keep the line number (if any)

of the procedure line currently being defined in the dribble file.

3-6

Report No. 2625 Bolt Beranek and Newman Inc.

To do this we fill in the definition of $EXAMINELINE.

TO $EXAMINELINE
10 IF NUMBERP FIRST :CURRENT LINE:

MAKE "LINE NO" FIRST :CURRENT LINE:
END

The reason, of course, that we have been maintaining the

additions to the form statement of FOO separate in."CURRENT FORM"

is that we must wait to see if the line parses correctly. If it

does not, this new information is simply discarded. We note

that $GOODPARSEP is available to do this.

TO $ENDLINE
10 IF BOTH $GOODPARSEP :DRIBBLE NO:

NOT EMPTYP :CURRENT PROC:
$ADD SENTENCE :CURRENT PROC:

"FORM"
:CURRENT FORM:

20 MAKE "CURRENT FORM" :EMPTY:
END

As a further extension of this special checking facility,

we must include the effects of student erase commands contained

in the dribble file. If a line or the whole procedure are erased,

this occurrence must be indicated by incorporating a comment so

signifying. It is easy to incorporate a check for such

erasures which includes appropriate additions to the variables

"FOO FORM". This can be done either from scratch or by using

results from $PARSEERASE, the top-level parsing procedure

concerned explicitly with the ERASE command. These procedures

are as straightforward as the ones just developed for checking

for operation vs. command. Their implementation is left to

the reader.

3-7

Report No, 2625 Dolt Beranek and Nowman Inc.

4. Aids for Execution and Debugging of Student Procedures

In addition to the parsing phase procedures, the analysis

package includes aids for running and testing the student's

procedures. These are described in the following sections.

4.1 Adding Breakpoints

Insertion of breakpoints into defective, or possibly defec-

tive, procedures is a time honored debugging device, The BREAK-

GO-CANCEL commands in LOGO give a limited amount of breakpoint

control, but, as we will see, they can easily be extended by

user-defined procedures to provide fairly general and powerful

debugging aids. These insertions can be done "by hand" via

insertion of suitable code, or automatically via system calls.

The former is good for occasional use; if the dribble file user

inserts breakpoints frequently, he may want to write assisting

procedures. In particular, cataloging of breakpoints is useful

as well as checks to make sure the breakpoint insertion is not

destroying anything. A simple way to put in a breakpoint is by

just putting in the procedure - BP (pname) $ (line no).*

The list of extant breakpoints can be kept in "BREAK POINTS",

say, as the pairs (pname) (line no). So, we can write the simple

elicitation dialogue

TO $INSBREAK
10 $INSBREAKI $ACCEPTLINE $ACCEPTPNAME
END

TO $ACCEPTPNAME
10 TYPE "INTO PNAME..."
20 OUTPUT $ACCEPTPNAMEI REQUEST
END

*

(finds out pname)

The name BP (pname) $ (line no) is chosen to ensure uniqueness.

3-8

Report No. 2625 Bolt Beranek and Newman Inc.

TO $ACCEPTPNAME1 :PNAME: (validates :PNAME:)
10 IF EMPTYP :PNAME: EXIT "EMPTYONAME,

LEAVING $INSBREAK"
20 IF $MP :PNAME: :CONTENTS: OUTPUT :PNAME:
30 PRINT "NO SUCH PROCEDURE"
40 OUTPUT $ACCEPTPNAME REWEST
END

TO $ACCEPTLINE :PNAME: (elicits line number)
10 TYPri "LINE NO..."
20 OUTPUT SENTENCE :PNAME: AND $ACCEPTLINE1 REQUEST
END

TO $ACCEPTLINE1 :LINE NO: (checks on line number)
10 IF EMPTYP :LINE NO: EXIT "EMPTY LINE NO LEAVING

$1NSBREAK"
20 TEST LESSP :LINE NO: 1

30 IFTRUE PRINT "LINE NO MUST BE GREATER THAN 0"
40 IFTRUE OUTPUT $ACCEPTLINE1 REQUEST
50 IF NOT $MP :LINE NO: LINES :PNAME: OUTPUT :LINE NO:
60 PRINT "ALREADY OCCUPIED, WANT TO CLOBBER IT?"
70 IF $YESP REQUEST OUTPUT :LINE NO:
80 DO SENTENCE "LIST" :PNAME:
90 OUTPUT $ACCEPTLINE REQUEST
END

TO $YESP :L:
10 IF $MP :L: "YES Y OK" OUTPUT "TRUE"
20 IF $MP : L: "NO N NAH" OUTPUT "FALSE"
30 PRINT "YES OR NO?"
40 OUTPUT $YESP REQUEST
END

The program now has a procedure name and line number, which

have been pretty carefully checked out, and is ready to start

work via $INSBREAK1. We assume there are just two kinds of

breaks, one after a specified number of times through the break-

point, the other a conditional expression evaluating to "TRUE".

3-9

Report No, 2625 Bolt Beranek and Newman Inc.

TO $INSBREAK1 :PROC LINE: (inserts breakpoint)
10 DO SENTENCE "EDIT" FIRST (opens procedure for

:PROC LINE: insertion of breakpoint)
20 $INSBREAK2 LAST :PROC LINE:

WORDS "BP" FIRST :PROC LINE: "$"
LAST :PROC LINE:

END

TO $INSBREAK2 :LINE: :PNAME:
10 DO SENTENCE :LINE: :PNAME: (putting in the
20 DO FEND" breakpoint)
30 DO SENTENCE "TO" :PNAME:
40 PRINT "(COUN)TER OR (COND)I1IONAL BREAKPOINT?"
sp IF IS REQUEST "COUN" $MAKECOUNTER ELSE

$MAKECONDITIONAL
(4) DO "END"
7,1 $ENTERBREAK
END

We make a simple counter rather than one which increments

on a condition.

TO $MAKECOUNTER
10 DO SENTENCES "10 MAKE"

:QUOTE: :PNAME: :QUOTE:
"$SUMM 1 AND :" :PNAME: ":"

20 PRINT "HOW MANY TIMES THROUGH?"
30 DO SENTENCES

"2P TEST IS :" :PNAME: ":"
$ACCEPTNUM REQUEST

4P DO SENTENCES
"SO IFTRUE MAKE"
:QUOTE: :PNAME: :QUOTE:
":EMPTY:"

SO DO SENTENCES
"40 IFTRUE PRINT" :QUOTE:
"BREAK AT LINE" LAST :PROC LINE:
"OF" FIRST :PROC LINE: :QUOTE:

60 DO
"SO IFTRUE BREAK"

7P DO "END"
END

3-10

(We are using a unique
construction for variable
name as well as procedure
name)

(reset counter)

Report No. 2625 Bolt Beranek and Newman Inc.

TO $ACCEPTNUM :NUM:
10 IF NUMBERP :NUM: OUTPUT :NUM:
20 PRINT "NUMBER PLEASE"
30 OUTPUT $ACCEPTNUM REQUEST
END

(elicits a number)

Now, for creation of conditional breaks.

TO $MAKECONDITIONAL
10 PRINT "CONDITION FOR BREAK..."
20 DO SENTENCES

"30 IF" REQUEST "THEN BREAK"
30 DO "END"
END

The set of procedures for creating a breakpoint facility is

now complete. 'Ihe only things remaining are the bookkeeping

procedures for keeping track of the breakpoints inserted. One

of these, $ENTERBREAK is already mentioned in $14SBREAK2. It

simply enters the breakname on the list "BREAK POINTS".

TO $ENTERBREAK
10 MAKE "BREAK POINTS" SENTENCES

:BREAK POINTS: FIRST :PROC LINE:
LAST :PROC LINE:

END

It is left to the reader to write the simple procedures

which selectively or globally list and erase breakpoints.

4.2 Running a procedure over aspecified input domain

In many circumstances it is dk.Firable to run a student's

programs in a mode different fror, their original operation. We

next discuss sets of procedures to do this. Perhaps the very

simplest generalization of simply trying a student's program with

3-11

Report No. 2625 Bolt Beranek and Newman Inc.

a sequence of different inputs is to provide many sets of input

parameters at a time. The chief utility of this extension is

that standard sots of inputs can be developed by the user and

applied to student procedures very simply. The top-level

procedure is $RUN, which takes three inputs -- the procedure to

be exercised, the number of inputs, and the list of input sets.

$RUN uses $PULLQ to pull and quote one set at a time and $CUT to

give the remainder of the input set.

TO $RUN :PNAME: :# INPUTS: :INPUT LIST:
10 IF EMPTYP :INPUT LIST: STOP
20 DO SENTENCE :PNAME: $PULLQ :# INPUTS:

:INPUT LIST:
30 $RUN :PNAME: $CUT :# INPUTS: :INPUT LIST:
END

TO $PU1LQ :NUM: :LIST:
10 IF EMPTYP :LIST: EXIT "NOT ENOUGH INPUTS"
20 IF ZEROP :NUM: OUTPUT :EMPTY:
30 OUTPUT SENTENCES

:QUOTE:
FIRST :LIST:
:QUOTE:
$PULLQ (DIFF :NUM: 1) BUTFIRST :LIST:

END

TO $CUT :NUM: :LIST:
10 IF ZEROP :NUM: OUTPUT :LIST:

ELSE OUTPUT $CUT (DIFF :NUM: 1)
BUTFIRST :LIST:

END

3-12

Roport No. 2625 Bolt Beranek and Newman Inc.

Now, to show its use.

+TO FOO :A: :B:
010 PRINT SUM OF :A: AND :lit
@END
FOO DEFINED
+$RUN "FOO" 2 "1 2 3 4 5 6 7 8 9 10"
3

7

11
15
19

It is easy to write a procedure for $RUN which computes the

number of inputs of FOO, in fact, $COUNTARGS in the parsing

section is just that procedure.

4.3 Running a procedure from a specified point

Another useful facility for debugging programs, especially

those written by other people, is to run a program starting with

some arbitrary line number. This is the case, for example, when

one is confronted with a large (bad practice, of course) program

whose initial part just generates a lot of printing. The proce-

dure $RUNFROM :PNAME: :LINE: runs :PNAME: starting at :LINE: by

inserting a GOTOLINE :LINE: as line 1 of :PNAME:. (If line 1 is

already occupied, $RENUMBERing, discussed in Section 4.5, is

called.) Line 2 is then defined to erase line 1, otherwise

recursions might end badly. After :PNAME: has been executed, the

two added lines 1, 2 are removed and the procedure is

$UNRENUMBERED, if it was $RENUMBERED earlier.

3-13
-6'

Report No. 2625 Bolt Beranek and Newman Inc.

TO $RUNFROM :PNAME: :LINE:
10 TEST $INTP "1 2" LINES :PNAME:
20 IFTRUE $RENUMBER :PNAME:
3O EDIT :PNAME:
40 IFTRUE DO SENTENCE "1 GOTOLINE" W : LINE: "O"
SO IFFALSE DO SENTENCE "1 GOTOLINE" : LINE:
60 DO "2 ERASE LINE 1"
70 DO "END"
80 DO :PNAME:
90 DO SENTENCE "EDIT" :PNAME:
1p0 PRASE LINE 1
110 ERASE LINE 2
120 DO "END"
130 IFTRUE $UNRENUMBER
END

TO $INTP :LIST 1: :LIST 2:
10 IF EMPTYP :LIST 1: OUTPUT "FALSE"
20 IF $MP FIRST :LIST 1: :LIST 2: OUTPUT "TRUE"
30 OUTPUT $INTP BUTFIRST :LIST 1: :LIST 2:
END

4.4 Testing of procedures which use random number generation

It is sometimes very difficult to track down bugs which turn

up in procedures which use random variables; in LOGO these involve

the built-in operation RANDOM. The bug may only exist for a very
small fraction of values of a random variable, or the manifestation

of the bug may vary widely in successive executions of the defec-
tive procedure. In using LOGO, there are several means at ones

disposal for systematically varying RANDOM's outputs. The

simplest, yet very effective, such method is to replace (by means

of the user-defined $REPLACE, discussed in Section 4.5) each

occurrence of RANDOM with a constant -- 0 being the best choice.

The great success of this procedure is that the most common

serious misuse of random numbers is forgetting that the value 0

can be assumed and tl-:erefore devising a defective end-test. By

way of trivial example:

3-14

Report No. 2625 Bolt Beranek and Newman Inc.

TO RANDOMCHOOSE :LIST:
10 OUTPUT CHOOSE RANDOM :LIST:
END

TO CHOOSE :N: :LIST:
10 IF (EQUALP :N: 1) OUTPUT FIRST OF :LIST:
20 OUTPUT CHOOSE (:N: 1) BUTFIRST OF :LIST:
END

If RANDOM is replaced by 0 above, the otherwise intermittent

bug is impaled. (Actually, it is better to SREPLACE RANDOM by

00000, say, which is numerically the same as 0, but easier to

$UNREPLACE.)

For those very rare (yet very irritating) circuAstances

where the simple substitution described above doesn't work, a more

methodical replacement of the random numbers is called for. To

be able to do this, we must be able to repeat a procedure while

systematically varying some of its internal parameters (as opposed

to specifying an input domain as we did earlier in the simple

case $RUN). Unfortunately, this is a very hard problem. One

cannot simply systematically replace the, say S, bccurrences of

RANDOM in the user procedures by registers which are then method-

ically "stepped through" from 0 to 9. Consider, for example, the

following (rather poor) algorithm for generating quinary sequences

of length :N:

TO RANDOMQUINARY :N:
10 IF (EQUALP :N: 0) OUTPUT :EMPTY:
20 MAKE :DIGIT: RANDOM
30 TEST GREATERP 6 :DIGIT:
40 IFTRUU OUTPUT WORD

:DIGIT:
RANDOMQUINARY (DIFF :N: 1)

SO IFFALSE OUTPUT RANDOMQUINARY :N:
END

3-15

Report No. 2625 Bolt Beranek and Newman Inc.

In this procAure, modified from actual student work, the

RANDOM in lino 20 is cycled through repeatedly in a single execu-

tion of RANDOMQUINARY, and very likely even more times through

repeated calls on RANDOMQUINARY by higher level procedures.

Furthermore, the number of times RANDOM is invoked in a single

call to RANDOMQUINARY will vary with the values it assumes, from

:N: to infinity, though, fortunately the probability of a given

number of invocations falls rapidly as the number exceeds :N:.

It is clear from this simple example, together with even a

slightly active imagination, that the general problem is pretty

hard. So we try a new tack concentrating on the desired product,

rather than the means. Wiat we really want is a trace of the

values assumed by RANDOM so that we can see which ones worked and

which failed. This is easily done by replacing each occurrence

of RANDOM with a procedure $RANDOM which, as well as printing the

value that RANDOM assumes, also prints where it is -- this posi-

tional information is taken to be the input to $RANDOM so that a

single version of this procedure suffices for all occurrences of

RANDOM generation.

TO $RANDOM :PNAME LINENO:
10 PRINT SENTENCE "AT" :PNAME LINENO:
20 MAKE "PNAME LINENO" RANDOM
30 TYPE WORD "==>" :PNAME LINENO:
0 OUTPUT :PNAME LINENO:
END

In addition, each procedure containing occurrences of the

$RANDOM procedure should be traced so that the aggregation of

the more complex random quantities these may generate are clearly

shown. To do all this we write a procedure which sweeps through

any specified set of procedures, usually the entire :CONTENTS:,

3-16

Report No, 2625 Dolt Beranek and Newman Inc.

neglecting those procedures which begin with $. (For one thing

we don't want to debug "system" procedures; for another, embarrass-

ing things would happen -- to $RANDOM itself, for example,)

TO $BUGRANDOM :PLIST:
10 MAKE "PLIST" SENTENCES :PLIST:

20 TF EMPTYP :PLIST: STOP
30 TEST IS FIRST OF FIRST

OF :PLIST: "$"
40 IFFALSE $BUGRANDOM1 FIRST :PLIST:

LINES FIRST :PLIST:
50 $BUGRANDOM BUTFIRST :PLIST:
60 PRINT "FINISHED $BUGGING"
END

(sweeps through :PLIST:)
(ensures that :PLIST: is a
sentence)

$BUGRANDOM1 will search for lines containing RANDOM, If one

is found, it is suitably modified by $RANDOMIZE and the procedure

containing the RANDOM is traced.

TO $BUGRANDOM1 :PNAME: :LINES:
10 IF EMPTYP :LINES: STOP
20 TEST $MP "RANDOM" TEXT :PNAME:

FIRST :LINES:
30 IFTRUE DO SENTENCE "TRACE" :PNAME:
40 IFTRUE $RANDOMIZE TEXT :PNAME:

FIRST :LINES:
50 $BUGRANDOM1 :PNAME: BUTFIRST :LINES:
END

TO $RANDOMIZE :LINE:
10 DO SENTENCE "EDIT" :PNAME:
20 DO SENTENCE FIRST :LINE: $REP

BUTFIRST :LINE:
30 DO "END"
END

3-17.

Report No, 2625 Bolt Beranek and Newman Inc.

TO $REP :TEXT: (does the actual replacement)
10 IF EMPTYP :TEXT: OlOPUT :EMPTY:
20 TEST IS FIRST :TEXT: "RANDOM"
30 IFFALSE OUTPUT SENTENCE FIRST :TEXT:

SEEP BUTFIRST :TEXT:
40 IFTRUE OUTPUT SENTENCES

"$RANDOM"
:QUOTE:
PNAME:
FIRST :LINE:
:QUOTE:
$REP BUTFIRST :TEXT:

END

To see how this set of five procedures works, let us try it

out on the single procedure RANDOMQUINARY, defined earlier as an

admittedly trivial example.

.4-$BUGRANDOM "PANDOMQUINARY"
FINISHED $BUGGING
+PRINT RANDOMQUINARY 2
RANDOMQUINARY OF 2
RANDOMQUINARY 20 ==> 6

RANDONQUINARY OF 2
RANDOMQUINARY 20 ==> 0

RANDOMQUINARY OF 1

RANDOMQUINARY 20 ==> 9
RANDOMQUINARY OF 1

RANDOMQUINARY 20 ==> 0
RANDOMQUINARY OF 0
RANDOMQUINARY OUTPUTS :EMPTY:

:-s- RANDOMQUINARY OUTPUTS 0
RANDOMQUINARY OUTPUTS 0

RANDOMQUINARY OUTPUTS 00
RANDOMQUINARY OUTPUTS 00

A clear trace of all procedure operations relating to RANDOM

is provided even in complex situations where several procedures

use RANDOM and interact in nontrivial fashion. The reader is left

the much easier task of $UNBUGRANDOMing, by writing the suitable

set of procedures.

3-18

Report No. 262St Bolt Beranek and Newman Inc.

4.5 Editing Facilities - renumbering procedure lines

An ability to automatically renumber the lines of a program

is a useful editing feature of any line oriented programming

language. Although this facility is not included among the LOGO

primitives, the primitives are easily extended to perform this

function. To show the way in which editing commands can readily

be added by an experienced user, we follow the development of a

renumbering package in some detail.

When the procedure being modified is itself the object of

inquiry, as is the case with dribble file analysis, it is desirable

to also have facilities to undo changes. When one writes a

procedure RENUMBER, a procedure UNRENUMBER is likely to be of

additional use. Furthermore, a record should be automatically

generated of which procedures have been modified by RENUMBER.

Having specified his desired goals in this manner, the user now

must cast about for a renumbering scheme which is Invertible.

The usual method (as in most flavors of BASIC) in which an initial

number and step size are input parameters, requires that a separate

record be kept of the original numbering, a clumsy and inefficient

method.

Far simpler is the multiplication of each line number by a

fixed constant. Division by that constant will then restore the

line numbering to its original state. A choice of 10 provides

adequate spacing in nearly all cases and results in a very trans-

parent renumbering.

The careful user writing this renumbering package would also

note two further points:

3-19

Report No. 2625 Bolt Beranek and Newman Inc.

(A) The input of COTOLINE must also be modified in each

appearance of that command. This input need not be a number so

insertion of an explicit PRODUCT (OF) 10 (AND) must be inserted.

(B) It matters in which order the lines of a procedure are

renumbered. If one starts with the lowest number and works up,

renumbering a given line will clobber a succeeding line if the

two are in the ratio 1:10. A renumbering procedure starting with

the highest number eliminates this difficulty (vice versa for

unrenumbering).

Our hypothetical user follows the convention that "system"

procedures are preceded by $ to avoid possible conflict with

procedures defined by the dribble files themselves. He might

start his procedure-writing, as is his usual style, from the top

level down or from the bottom up, let us say the top down.

TO $RENUMBER :PNAME:
10 DO SENTENCE "EDIT" :PNAME:
20 DO SENTENCES

"TITLE"
BUTFIRST TEXT :PNAME: 0
";RENUMBERED;"

30 $REN :PNAME:
BUTFIRST LINES :PNAME:

(gets into redefinition mode)

(adds the comment "renumbered"
to the title line of :PNAME:)

(renumbers each of the lines
of :'PNAME: using--yet to be
written--$REN)

40 DO "END"
50 PRINT SENTENCE :PNAME: "RENUMBERED" (indicates that the

renumbering is completed)
END

$REN will go through the list of line numbers, starting with

the last one, creating a new copy of it with line number multi-

plied by ten, erase the old version and repeat with BUTLAST of

the list till it is empty.

3-20

Report No. 2625 Bolt Beranek and Newman Inc.

TO $REN :P.NAME: (:LIST: is the list, of line
numbers to be modified)

10 IF EMPTYP :LIST: STOP
20 DO SENTENCE OF

(WORD OF LAST :LIST: AND 0)
AND $CGOTO BUTFIRST TEXT*

:PNAME: LAST :LIST:

30 DO SENTENCE
"ERASE LINE"
LAST :LIST:

40 $REN OF :PNAME: AND
BUTLAST OF :LIST:

END

(creates a new line which has
line number 10 times that of
the last one on the list and
has text modified by $CGOTO
which looks for GOTO LINES
and modifies them)

(erases the old numbered
version of the line)
(the last line number on
:LIST: is taken care of, then
the process is repeated with
the rest of the list)

Now to write $CGOTO, which replaces "GOTOLINE" by "GOTOLINE

PRODUCT OF 10 AND", we use in turn the rather straightforward and

generally useful procedure $REPLACE.

TO $CGOTO :TEXT:
10 $REPLACE "GOTOLINE" "GOTOLINE PRODUCT OF 10 AND"

:TEXT:
END

TO $REPLACE 'A' 'B' 'C'
10 IF EMPTYP :C: THEN OUTPUT :EMPTY:
20 IF IS FIRST :C: :A: THEN OUTPUT

SENTENCE OF :B: AND BUTFIRST OF :C:
30 OUTPUT $REPLACE :A: :B: BUTFIRST :C:
END

Renumbering is now finished and we can create a dummy

procedure P00 to test it out:

Remember that TEXT :PROCEDURE NAME: :LINE NUMBER:
gives the complete line including the line number.

3-21

Report No, 262S

+TO FOO :N:
010 PRINT "I AM DOING row(
@20 GOTOL1NE :N:
@END
FOO DEFINED
+$RENUMBER "FOO"
FOO RENUMBERED
+LIST F00

TO FOO :N: ;RENUMBERED;
100 PRINT "I AM DOING FOO"
200 GOTOLINE PRODUCT OF 10 AND :N:
END

Bolt Beranek and Newman Inc.

This is a little less than half of the goal we specified at
the outset. Next we write the "unrenumbering" procedure. It is

different from its inverse in that we check to see if the

procedure :PNAME: has been renumbered and if not we abort the

process.

TO $UNRENUMBER :PNAME:
10 TEST $MEMBERP ";RENUMBERED;" (is the comment RENUMBERED on

TEXT OF :PNAME: AND 0 the title line :PNAME:?)
20 IFFALSE PRINT SENTENCE :PNAME: (if not, print message so

"HAS NOT BEEN RENUMBERED" indicating)
30 IFFALSE STOP (and stop)
40 DO SENTENCE "EDIT" :PNAME: (get ready to edit :PNAME:)
SO DO SENTENCES

"TITLE"
REPLACE (remove ;RENUMBERED; from

";RENUMBERED;" the title line of :PNAME:)
II 11

BUTFIRST TEXT :PNAME: 0

60 $UNREN :PNAME: (unrenumber the other lines
BUTFIRST OF LINES OF :PNAME: in :PNAME:)

70 DO "END" (leave editing mode)
80 PRINT SENTENCE :PNAME: "UNRENUMBERED"
END (print terminating message)

3-22

Report No. 2625 Bolt Beranek and Newman Inc.

$MEMBERP, which tests whether :ELEMENT: is a member of :LIST:,

is rather straightforward,

TO $MEMBERP :ELEMENT: :LIST:
10 IF EMPTYP :LIST: OUTPUT "FALSE"
20 IF IS :ELEMENT: FIRST :LIST: OUTPUT "TRUE"
30 OUTPUT $MEMBERP :ELEMENT: BUTFIRST :LIST:
END

$UNREN is very much like its counterpart $REN, except that

before dividing a line number by 10, it looks to see if the last
digit is 0. If not, the line has certainly been added since

renumbering was done and is ignored.

TO $UNREN :PNAME: :LIST: (:LIST: is again the list of
the line numbers)

10 IF EMPTYP :LIST: THEN STOP (stop when :LIST: is exhausted)
20 TEST IS LAST OF FIRST OF :LIST: 0 (is the last digit of the

first line number 0?)
30 IFFALSE $UNREN :PNAME: (if not, go on to the next

BUTFIRST OF :LIST: line)
40 IFFALSE STOP
SO DO SENTENCE OF

BUTLAST OF FIRST OF :LIST: (divide line number by 10)
$UNCGOTO OF BUTFIRST OF TEXT

:PNAME: (we again have to deal with
FIRST :LIST: GOTOs)

60 DO SENTENCE "ERASE LINE" (erase the un-unrenumbered
FIRST :LIST: version of the line)

70 $UNREN :PNAME: BUTFIRST :LIST: (repeat for the rest of
:LIST:)

END

$UNCGOTO is a little more complicated than $CGOTO since a

sentence rather than a word is searched for. Rather than use a

more general $REPLACE, we write $UNCGOTO in one piece without

using $REPLACE.

3-23

Report No. 2625 Bolt Beranek and Newman lnc.

TO $UNCGOTO :TEST:
10 IF EMPTYP :TEXT: THEN OUTPUT :EMPTY:
20 TEST IS FIRST OF :TEXT: "GOTOLINE"
30 IFTRUE TEST IS $FIRST4 OF BUTFIRST ($FIRST4 gives the first

:TEXT: :LIST: four elements)
"PRODUCT OF 10 AND"

40 IFTRUE OUTPUT ($BUTFIRSTS removes the
$BUTFIRSTS OF :TEXT: first five elements)

SO OUTPUT SENTENCE FIRST :TEXT:
$UNCGOTO OF BUTFIRST :TEXT:

END

(We note, in passing, that $FIRST4'and $BUTFIRSTS can be

better written as special cases of more general procedures

$FIRSTN "4" and $BUTFIRSTN "5".)

Now we have written all the procedures to undo renumbering;

we test them by returning to our dummy procedure FOO,

4-$UNRENUMBER "FOO"
FOO UNRENUMBERED
÷L1ST P00

TO FOO :N:
10 PRINT "I AM DOING FOO"
20 GOTOLINE :N:
END

Thus the original version of FOO is restored. This unrenumbering

process can only be done once. Repetitions will be ineffective.

4-$UNRENUMBER "FOO"
FOO HAS NOT BEEN RENUMBERED

The only work remaining is to obtain from the set of

procedures defined (:CONTENTS:) that subset which has been

renumbered.

3-24

Report No, 2625 Bolt Beranek and Newman Inc.

TO $SEARCItREN
10 OUTPUT $SRC :CONTENTS:
END

TO $SRC :PLIST:
10 IF EMPTYP :PLIST: THEN OUTPUT

:EMPTY:
20 TEST MEMBERP ";RENUMBERED;"

TEXT FIRST :PLIST: "0"
30 IFTRUE OUTPUT SENTENCE

FIRST :PLIST:
$SRC BUTFIRST OF :PLIST:

40 OUTPUT $SRC BUTFIRST :PLIST:
END

(we must initialize our
search by specifying a list
of procedure names)

(test if the first procedure
in :PLIST:Ilas been renumbered)

(if so, include it in the
output and go on)
(if not, just go on)

And, we can even write a procedure which unrenumbers

everything.

TO $UNRENUMBERALL
10 $ UNRALL $SEARCHREN
END

TO $UNRALL :LIST:
10 IF EMPTYP :LIST: THEN STOP
20 $UNRENUMBER FIRST OF :LIST:
30 $UNRALL BUTFIRST OF :LIST:
END

(initialization)

This is a fairly substantial, sophisticated product for a

relatively small, unsophisticated amount of work, Such a package

should be the product of no more than two hours of work by a

reasonably experienced LOGO user of average ability.

3-2&'

Report No 2625 Bolt Beranek and Newman Inc.

4.6 Further examples of editing aids

In the preceding section we developed one particular aid --

a renumbering package -- in some detail. We did so for purposes

of illustration - not all users will feel a need for such a

capability and those who do may have differing views on the form

and effects of such a package. In this section we briefly discuss

some further "stand alone" aids which can easily be written to

augment editing capabilities.

Modifying some or all of the procedures in one's workspace

is often useful, as for example, when the name of a procedure is

to be consistently changed. This is easily done by using DO,

LINES, and TEXT in much the same way as in the renumbering example.

The form of the top-level procedure might be

REPLACE (old text) (new text) (procedure list)

where the procedure list specifies those procedures in which the

substitution is to be made. (:CONTENTS: can be used to specify

all procedures.) An example of a REPLACE procedure similar to

this is developed in Appendix 1.

A related idea is to develop a proced6fle

FIND (text) (procedure list) which simply enumerates the

occurrences of (TEXT) in the domain specified by (procedure list).

Both of the above types of procedure can be much enhanced by

the use of the set of pattern matching procedures which we have

written in LOGO. 1
They provide a capability much the same as that

Ttse are described in "Uses of the LOGO Programming Language in
dergraduate Instruction" Lukas, George, Proceedings National

Conference, Association for Computing Machines, 1971.

3-26

Report No. 2625 Bolt Beranek and Newman Inc.

in SNOBOL2. These pattern matching programs are accessed by a

top-level procedure MATCH (pattern list) (text). MATCH is a

prodicate which returns true or false as it succeeds or fails. A

pattern list is a string of variables and literal text. In the

case of success, any variables used in specification of the

pattern are set to those values which resulted in success.

Variables are distinguished from literal text to be matched

by their first character being $. They may be followed by a pair

of parentheses enclosing a type specification for the variable.

The types of variable currently "built-in" include

PAR must have correctly matching parentheses
NUM must be numerical
(number) must be of length (number)

The matching package also provides the user an area to insert his

own variable specifications.

Examples of the use of MATCH are:

+PRINT MATCH "AB" "ABC"
FALSE
+PRINT MATCH "A $U" "ABC"
TRUE
+PRINT :$U:
BC
+PRINT MATCH "$U(PAR) * $V(PAR)" "(X+2)*(x+3)11
TRUE
+PRINT :$U:
(X+2)
+PRINT :$V:
(X+3)

Two notes should be made regarding the use of variables in

pattern specification. First, the use of repeated matching

occurrences of a variable in a pattern results in the requirement

that all occurrences be identical, unlike SNOBOL2. Second,

3-27

Report No. 2625 Bolt Beranek and Newman Inc.

declaration of type of variable need only be made for one

occurrence of the variable in a pattern list, although the

declaration can be repeated if desired.

The pattern matching capabilities can be used to advantage

in all phases of the analysis. Thus, when working directly with

the student programs, matching procedures can be used to locate

and correct bugs of specified form; for example, to replace all

occurrences of-ale form PROCEDURNAME (A,B,C) by PROCEDURENAME

(B,A,C). The entire parsing package can be managed by a pattern-

matching-based executive program. It can, for example, make the

parenthesis checking procedures more powerful by extracting the

Content for further analysis. It can easily separate out .the

student comments and do specified keyword searches on them to

help guide the analyst's run time work.

4.7 Inserting Comments into the Procedure Structure Diagram

The "empty" procedure $NOTE is provided in the graphics

portion of the RUN package to enable comments to be displayed on

the procedure structure diagram along with the procedure name.

$NOTE simply gives the transformation of its input desired on the

diagram. Thus, initially $NOTE is defined:

TO $NOTE :PNAME:
10 OUTPUT :PNAME:
END

Let us say, for example, that a predicate $RECURSEP :PNAME:

has been defined by the user, which outputs "TRUE" or "FALSE" as

its input, :PNAME:, is or is not recursive. $NOTE can then be

used to indicate recursiveness on the procedure structure diagram

by "starring" recursive procedures. This is done simply by the

addition of a line to its definition

5 IF $RECURSEP :PNAME: OUTPUT WORDS "**" :PNAME: "**"

This facility is used in Example 4 of Part 4.

3-22t

Report No. 262S Bolt Beranek and Newnan Inc.

Part 4.

Examples of System Use

4 -&

Report No. 2625 Bolt Beranek and Newman Inc.

1. Introduction

The dribble file analysis system has been described and

documented in the preceding parts of this report. In the follow-

ing pages we illustrate the use of the system in concrete appli-

cations. Each application emphasizes a particular aspect of the

system's use. The first example shows hqw the standard facilities

of the system are used in routine inspection of a student's work.

It illustrates the various commands for executing dribble file

lines and shows how procedures are listed and diagrammed during

the course of running through the dribble file. The second

example is an analytic study of a student's work during an

extensive program debugging session. It shows how the system can

provide the analyst with very specific and detailed insights

about the student's difficulties, cognitive style, and current

progress.

The third and fourth examples illustrate features useful for

analyzing relatively complex program structures. The particular

program structures we have chosen for illustration deal with

random generation of grammatic sentences, and automatic extrapo-

lation of number sequences. Both are straightforwardly written,

compact, and easily understood. Nevertheless, they comprise a

number of component programs, approximately 10 in each case,

interconnected at approximately four levels of depth, and some

of the programs are recursive. In the third example we illustrate

the use of the procedure diagramming facility for graphically

displaying such complex structures in a fairly transparent manner.

In the last example we illustrate the use of analyst-written

procedures to assist in characterizing complex structures of this

kind and also in actually augmenting the built-in procedure

diagramming facility to indicate which procedures are simply

recursive.

4-1

Report No. 2625 Bolt Beranek and Newman Inc.

Those examples are treated in the next section. In each

case, discussions accompany the interactions made using the dribble

filo analysis system. The interactions were recorded using the

photocopy device associated with the IMLAC display scope. Those

pictures form the basis for the discussions. We have typically

combined two or three such scope photographs into each figure so

as to make the presentations more concise.

2. Example 1

The dribble files used in this example and the following one

were generated by University of Massachusetts under:traduates in a

remedial computer mathematics course. Both examples are drawn

from student work in geometry. The first example mainly concerns

the development of a procedure for drawing triangles. As will be

evident from looking at the student's work, he did not find this
to be a trivial task.

Figure 1 shows the beginning of the analysis. In the first

line, the user starts the analysis system by typing $STARTRUN.

On line 2, the system requests the name of the dribble file to be

analyzed (DRIBBLE FILE:); the user responds by typing the name

of the lesson (LESSON PARSED). Then, on line 3, he calls for

execution of the first lines of the dribble file, up to line 15,

($DOTO 15). Dribble file lines ***1*** through ***6*** are

executed with no difficulty -- these constitute the definition

of the procedure TRIANGLE. Line ***7*** however, where the

student had called for execution of this procedure with an input

of 3, ran into a problem, causing LOGO to stop. The diagnostic

states the student's error (MARK NEEDS A MEANING) and indicates

where the error occurred (I WAS AT LINE 10 IN TRIANGLE). At this

point the analysis system has stopped and waits for the user's

next command.

4-2

Report No. 2625 Bolt Beranek and Newman Inc.

During the course of execution of dribble file lines, the

procedure 'urrently being defined, if any, is displayed in its

current form in half-sized text at the lower left corner of the

display. Note in Figure 1 that TRIANGLE is so displayed.

Because the small text characters are difficult to read on the

photocopy (though not, of course, on the face of the scope), we

have shown the definition in standard size at the lower right

corner of the figure (and we follow this convention in subsequent

figures).

In Figure 2 the user proceeds with the command $DOTO 25.

The system then executes dribble file lines ***9*** through

25 without being halted. (These lines define the procedures

MARK, SUPERMARK, and RECTANGLE.) At this point the user types

$WHERE and the system responds AT DRIBBLE LINE 25 WHICH IS END

and then names the procedures which have thus far been defined.

(Note that at this point, the procedure which has most currently

been defined, RECTANGLE, is shown at the lower left corner.)

The user then types the command $DOALL, which calls for the

execution of the remainder of the dribble file.

As shown in Figure 3, the system is only able to execute

the lines up to ***61***. There it ran into trouble, so indicated,
(THERE ARE 1 INPUTS MISSING FOR MARK. I WAS AT LINE 10 IN TRIANGLE)

and stopped. At this point the user listed the student's

procedures TRIANGLE and MARK to look at their current definitions.

Next (Figure 4) he proceeds with another $DOALL. This time the

system stops with an error indication after line ***66***.

The user proceeds in this fashion through line ***78***

where another error stop occurs (TRIANGLE }JAS NOT BEEN COMPLETELY

DEFINED) where the student had attempted to execute TRIANGLE.

4-3

Report No. 2625 Bolt Beranek and Newman Inc.

Subsequently (Figure 5) , following the $WHERE command, the user

calls for a diagram of the procedure STRIPE by typing $DISPLAY

"STRIPE". The procedure structure diagram for STRIPE is shown.

(As with the display of current definitions, small text is used
in these diagrams also. To aid the reader, the names of the

procedures displayed in the boxes are typed in at the right of
the diagram.) The diagram shows that STRIPE uses SUBRECTANGLE

which, in turn, uses SUPERMARK and RECTANGLE. Also, that

SUPERMARK uses MARK and that RECTANGLE uses SUPERMARK. More

information about diagrams is given in the section discussing

Example 3.

As seen in Figure 6, the user also diagrams the procedure

TRIANGLE, which has a simple procedure structure (it uses the two

procedures NUM and MARK neither of which itself uses other

procedures). This diagram is shown at the bottom of the figure.

After listing the procedures NUM and TRIANGLE, he calls for the

execution of the revainder of the dribble file with a $DOALL.

Completion is indicated by the system printing ****END-UF-FILE****.

The user then types PRINT :FINAL CONTENTS: to list the student

procedures extant at the end of the run.

The student work in this dribble file consisted almost

entirely in an attempt to write a good TRIANGLE procedure. He

did not succeed, despite an extensive (but not insightful)

editing effort. Along the way he wrote over 20 distinct versions

of TRIANGLE. The $STEPPROCEDURE facility, in cases like this,

gives a thumbnail history of the progressive stages in the

development of a program. The analyst requests an enumeration

of all these versions by typing $STEPPROCEDURE "TRIANGLE". The

system responds (Figures 7, 8, and 9) with a listing of these

successive definitions in the order in which the student had

created them. In each new version, changed lines are set off

with the prefix .>.

4-4-

Report No. 2625 Bolt Beranek and Newman Inc.

f$STARTRUN
DRIBBLE FILE:LESSON PARSED
fODOTO IS
44$ 1 *4* TO TRIANGLE i N

*** 2 0** 10 MARK X "

WI*** 20 T IS SUM *X" 1INt
*** 4 *** 30 IFT STOP
444 5 44* 40 MARK SUM " X " I

*** 6 *44 END
*44 7 *** TRIANGLE 3
MARK NEEDS A MEANING.
1 RAS At LINE 10 IN TRIANGLE

IS ttltit,Lt Oil
It
t! 1!II IS 01 oti
tt ItttA $12P
0 MC Sam 4,
1116

TO TRIANGLE :N:
10 MARK "X"
20 TEST IS SUM "X" 1 :N:
30 IFTRUE STOP
40 MARK SUM "X"
END

Figure 1.

Roport No. 2625 Bolt Beranek and Newman Inc.

fODOTO 25

*** 0 4** TO MARK : CHAR : : N

*44 10 444 10 TYPE 3 CHAR :

0 11 * 20 TEST IS DIFFERENCE N 1 " 0 *
*** 12 *** 30 IFTRUE STOP
4 13 4** 40 MARK : CHAR 1 DIFFERENCE s N s 1 *

44* 14 *4* END
44* 15 444 TO SUPERMARK : CHAR : :NtILET s :H:
*** 10 *** 10 HARK : CHAR : : N :

*** 17 4** 20 HARK : LET : : H
*** It *** END
*** 19 *** TO RECTANGLE : LET H N s : CHAR : s Y :

*** 20 *** 10 SUPERHARK : CHAR : Y s : LET : H :

444 21 444 20 PRINT " "

4 22 *** 30 TEST IS DIFFERENCE : N : " 1 * " 0 "

*** 23 444 40 IFTRUE STOP

*** 24 *4* 50 RECTANGLE : LETs:MIDIFFERENCEIN:"1"ICHAR::
Y

*** 25 444 END
011WHERE

AT GRIDDLE LINE 25
WHICH IS

END
THE PROCEDURES TRIANGLE HARK SUPERHARK RECTANGLE HAVE SEEN DEFINED
4-0DOALL.

1 ettivitt dill ego etails its
II C-7:1:::It 1:21 oto alto AI
13 t)1A le
1) tnt It eltt:::: As t

tt 1:13.11414 Mt!' 10. unman I orb Ili
tie

TO RECTANGLE :LET' 'M"N' 'CHAR: :Y:

10 SUPERMARK :CHAR: :Y: :LET: :M:
20 PRINT ""
30 TEST IS DIFFERENCE :N: "1" "0"
40 IFTRUE STOP
50 RECTANGLE :LET: :M: DIFFERENCE :N: "1"

:CHAR: :Y:
END

Figure 2.

4-6

Report No. 2625 Bolt Beranek and Newman Inc.

4 40 *44 30 OUTPUT DELETE OUTFIRST : CHAR : DIFFERENCE N : "

SS* 47 *4* END
4 4$ MI TO STRIPE1M: :NI:Y1:S:
SO 49 00101JORECTANOLEIMI:N:IY:
40* 50 *0* 20 SUOREGTANGLE :MI:NitUMIY: *1
464 51 *Ifi 30 TEST IS SUN : Y : "1"IS:
4 52 *0* 40 IFTRUE STOP
4 53 *4* 50 STRIPE :M: :N1SUM s'Y : "1" :S:
*Of 54 444 END
04 55 444 TO MIDDLE N : X :

444 50 4** 10 HARK " DIFFERENCE HALF N HALF COUNT : X.:

*** 57 *4* 2A TYPE : X :

44* 58 444 END
*** S1 *00 TRIANGLE 3
THERE ARE 1 INPUTS HISSING FOR HARK,
I WAS AT LINE 10 IN TRIANGLE

4LIST TRIANGLE

TO TRIANGLE :N:
10 HARK "X"
20 TEST IS SUM "X" 1 :N:

30 IFTRUE STOP
40 HARK SUM "X" I

END

#LIST HARK

TO MARK :CHAR: IN:
10 TYPE :CHAR:
20 TEST IS DIFFERENCE :N: 1 0

30 IFTRUE STOP
40 HARK :CHAR: DIFFERENCE :N: 1

END

II
to t.171 toltIS4144 mu eil vALI tit oh
II lilt

TO MIDDLE :N: :X:
10 MARK "" DIFFERENCE HALF :N:

HALF COUNT :X:
20 TYPE :X:
END

Figure 3.

4-7

Report No. 2625 Bolt Beranek and Newman Inc.

'-$DOALL

*SS 02 414# EDIT TRIANGLE
444 03 444 10 HARK " X " 1

4$404 4#t 40 HARK " X " SUM " X" 1
tot' G5 44$ END
*** 06 #ts TRIANGLE 3
X

SUM OF *X* AND "1"
INPUTS MUST DE NUHOERS.
I NAS AT LINE 20 IN TRIANGLE

II II

II II

44* 75 *411 LIST SUPERMARK

TO SUPERMARK :CHAR: :N: :LET: :Kt

10 HARK :CHAR: :N:

20 HARK :LET: Oh
END

44$ 76 t4# EDIT TRIANGLE
444 7t 44$ TRIANGLE : N 1 H :

TRIANGLE HAS NOT BEEN COMPLETELY DEFINED.

It tIlt4Itt iii

(I Val 'to t
ta 1:1t 11 t, As

1/1r4 11:a
(SW(4 tit 11

TO TRIANGLE :N:
10 MARK :X: 1

20 TEST IS SUM 1 1 :N:
30 IFTRUE STOP
40 MARK "X" SUM 1 1

END

Figure 4.

4-8

Report No 2625 Bolt Beranek and Newman Inc;

f$!1HERE

AT °RIDDLE LINE 97
NHICH IS

TRINGLE 4

THE PROCEDURES TRIANGLE MARK SUPERHARK RECTANGLE SUDRECTANGLE FIND HALF
DELETE STRIPE MIDDLE NUH TRIANGLE HAVE OEEN DEFINED
44DISPLAY "STRIPE'
4-

Figure 5,

4-9

STRIPE

SUBRECTANGLE

SUPERMARK RECTANGLE

MARK

Report O. 2625 Bolt Beranek and Newman Inc.

f$DISPLAY *TRIANGLE*
fLIST HUH

TO NUM Ni:

10 MAKE :N: 1
END

fLIST TRIANGLE

TO TRIANGLE :M:
10 MARK *X* NUM :N:
20 PRINT **
30 TEST IS DIFFERENCE :H: 1 6

40 1FTRUE STOP
56 MARK *X* SUM NUM tNt I
END

.-$DOALL

s ** 187 *** EDIT TRIANGLE

*** 181 ***

SEND-OF-FILES

oIRINt :FINAL CONTENTS:
TRIANGLE 1 1 HARK 9 ? SUPERHARK 15 4 RECTANGLE 19 5 SUDRECTANGLE 25 3
FIND 33 1 HALF 39 1 DELETE 43 2 STRIPE 48 4 MIDDLE 55 2 NUN 87 1
TRIANGLE 90 1

Figure 6.

4-10

TRIANGLE

NUM MARK

Roport No. 2G2S Bolt Beranek and Nowman Inc.

*.STEPPROCEDURE "TRIANGLE"
'WO TRIANGLE : N :

TO TRIANGLE N :

Ilona HARK " X "

TO TRIANGLE : N

10 HARK " X "

al020TIS SUM "X" 1 :N:
4

TO TRIANGLE : N :

10 HARK " x

20 T IS SUM " K" 1 : N :

as>30 IFT STOP

TO TRIANGLE N :

10 HARK " K "

20 T IS SUM "X"i:Nt
30 IFT STOP
sts)40 HARK SUM ' K * I

4

TO TRIANGLE N :

mr>10 MARK *X"1
20 1 IS SUM * X " 1 : N :

30 IFT STOP
40 MARK SUM " K " I

TO TRIANGLE N

10 HARK " X " 1

20 T IS SUM " X * 1 : N :

30 IFT STOP
..)40 MARK " X " SUM " X " 1

TO TRIANGLE : N :

10 MARK " X " 1

**>20 1 IS SUM 1 1 N :

30 IFT STOP
40 HARK "X" SUM "K"1

TO TRIANGLE : N :

10 HARK "X"1
20 T IS SUM 1 1 : N :

30 IFT STOP
=2040 HARK " x " SUM 1 1

0 0

0

Figure 7.

4 -1L

Roport No, 2625 Bolt Beranek and Nowman Inc.

TO TRIANGLE H %

10 HARK " X " NUM N

20 PRINT 1' *

**>30 T IS DIFF H : 1 0

4

TO TRIANGLE H :

10 MARK x NUM : N

20 PRINT w w

30 T IS DIFF : H : 1 4

* >40 IFT STOP
4

TO TRIANGLE ; H

10 HARK * X w NUM : N

20 PRINT ' w

30 T IS DIFF H 1 0

40 IFT STOP.

**>S0 MARK ' X ' SUM NUM : N : 1

TO TRIANGLE : M

*010 HARK " X " N

20 PRINT "

30 T IS DIFF H : 1 0

40 IFT STOP
50 HARK ' X " SUM NUN N : 1

4

TO TRIANGLE : M
*1010 HARK N X " " NU "

20 PRINT "

30 T iS DIFF H 1 0

40 IFT STOP
50 MARK ' X " SUM NUM : N : 1

TO TRIANGLE M

10 HARK ' X * " NU ,"

*020 HARK * X ' SUM ' NU ' 1

30 T IS DIFF : H : 1 0

40 IFT STOP
50 HARK * X ' SUM NUM : N : 1

TO TRIANGLE : H :

ie MARK ' X * NU '

**>20 PRINT '

30 T IS DIFF : 1 0

40 IFT STOP
50 HARK ' X " SUM NUM : N : 1

4

Figure 8.

4-12

Report No. 2625 Bolt Beranek and Newman Inc.

TO TRIANGLE : H :

10 MARK " X " : NU :

20 PRINT "
30 1 IS DIFF 1 H : 1 0
40 IFT STOP
50 MARK " X " SUM " NU " 1

TO TRIANGLE : H

10 MARK " X " : NU :

20 PRINT v "

30 T IS OIFF 1 1 0
40 IFT STOP

>S0 HARK " X " SUM : NU 1 1

TO TRIANGLE 1 H

10 HARK I X w : NU
20 PRINT " "

30 T IS DIFF : H : 1 0

40 IFT STOP
1050 MAKE

TO TRIANGLE H

10 HARK " X " : NU
20 PRINT
30 1 IS DIFF M : 1 0
40 IFT STOP
50 MAKE
'BM TRIANGLE :

I

TO TRIANGLE : H :

10 HARK " X : NU :

20 PRINT I

30 T IS DIFF :M:10
40 IFT STOP
50 MAKE
**>60 TRIANGLE : N :

TO TRIANGLE : M :

10 HARK X v NU :

20 PRINT
" >30 T IS DIFF N : 1 0

.40 IFT STOP

50 MAKE
SO TRIANGLE : N

*.

Figure 9.

4-13

Report No. 2625 Bolt Beranek and.Newman Inc.

3. Example 2

This example shows the use of the system in an intensive,

deep, sustained analysis of student work at operational and

intentional levels. The student's work shown in this dribble

file is aimed at creating a procedure DIAMOND for drawing a

diamond-shaped figure. The student's plan in designing this

procedure is to create two sub-procedures -- NUM for drawing

triangle and UPD for drawing an "upside-down" triangle. The

execution of a NUM followed by the execution of an UPD with

matching input should produce the desired result. Figure 10

shows the analyst's execution of the initial lines of the student's

dribble file, via the command $DOALL. These lines define the

procedures MARK, SUPERMARK, RECTANGLE, SUBRECTANGLE, and

(partially) FIND. A little later on as seen at the beginning

of Figure 11, the procedure NUM appears to be working. NUM

simply initializes and invokes the triangle drawing procedure

TRIANGLE. Student line ***69*** is an execution of NUM 4 and

this results in the drawing of a triangle with 4 rows of X's.

Already the student's work seems to be half finished.

In dribble file lines ***70*** through ***78*** the student

has defined the upside down triangle drawing procedure UPD. On

line ***79*** he has called for the execution of the procedure

UPD4. This is an error (he meant to write UPD 4). So LOGO

complains that UPD4 NEEDS A MEANING. At this point the analyst

executes a MERE to list the currently defined procedures. He

then diagrams the procedure structure of TRIANGLE (Figure 12) and

proceeds by executing the next lines of the student's program

with $DOALL (Figure 13),

Report No. 2625 Bolt Beranek and Newman Inc.

Now the student has correctly called for the execution of

his UPD procedure (Line ***80***). But, UPD 4 does not produce

the desired upside down triangle. Instead, it continues indefi-

nitely to draw rows of 4 X's. The analyst terminates this with a

BREAK and then lists the procedure UPD. Superficially it appears

correct -- it has a stopping condition and end test defined in

lines 30 and 40 and a decremental iteration of the input in line

50. (This directs it to draw two less X's on each successive row

of the upside down triangle.) But, obviously something is wrong.

Figure 14 shows the analyst executing the next lines of the

student's work. The student has started to debug UPD. In lines

82 he puts a TRACE on UPD and then executes UPD 4 again.

The trace lists the successive invocations of UPD. The correct

sequence of calls should begin UPD OF "4", UPD OF "2",

Insteae, UPD OF "4" calls UPD OF "4" indefinitely. After a BREAK

the analyst executes another $DOALL to see the student's next move.

The student has now decided to list UPD. After this (line

86) he once more executes UPD 4. (Probably he couldn't see

that anything was wrong and wanted to try the procedure again --

perhaps the computer had made an error of some kind.) But this

produces the same unfortunate result.

By the next line, some light has dawned. Figure 15 shows

the student fixing a bug in UPD. Dribble file lines ***91***

through ***93*** show him editing the procedure. He changes line

SO of his procedure from

MAKE :N: DIFF :N: 2

to

MAKE "N" DIFF :N: 2

This makes effective the decrementing of :N: by 2 on each round.

The student calls UPD 4 again on the following line. And now

4-15

Report No 2625 Bolt Beranek and Newman Inc.

another problem appears: UPD 4 writes a row of four X's and then

calls UPD 2 which writes a row of two X's, which in turn calls

UPD 0 which writes what appears to be an endless row of X's. The

analyst breaks the execution of UPI).

The following $DOALL exposes the student's next line. He

executes UPD 0 to confirm its nonterminating effect. Then (in

line ***99*** in Figure 16) he has traced this effect down one

level to find the subprocedure MIDDLE responsible. MIDDLE 50 1 0

produces the same nonterminating sequence of marks (1's in this

case). At this point the analyst lists the procedure, MIDDLE to

see what it does. And, as is shown, MIDDLE invokes the subproce-

dure MARK two times. He then executes the student's next line

101 which shows the student himself running the subprocedure

MARK and observing that MARK 1 0 replicates the results of

MIDDLE SO 1 0 and UPD 0, its big brothers.

After breaking the execution of MARK, the analyst lists

MARK :CHAR: :N: and presumably sees that, when its second input

is 0, MARK will indeed fail to stop. Instead it will slip through

the test for :N:.0 and indefinitely continue with a sequence of

negative :N: values. This is also understood by the student who

has (Figure 17) traced MARK and certainly noted this. The

student's response is interesting. Instead of debugging MARK so

that its stopping condition will work for even :N: as well as for

odd :N:, he has evidently realized that his DIAMOND procedure

only invokes MARK with odd values of :N: (since diamonds always

have odd numbers of X's in their rows; thus UPD 1 will make the

last call to MARK and MARK "X" 1 will stop after typing a single

"X" mark). So the student realizes that he can ignore the

difficulty with MARK, since it is not relevant to his goal, and

he proceeds with DIAMOND. In lines ***112*** through ***115***

he defines DIAMOND as NUM 8 followed by UPD 15.

4-16

Report No. 2625 Bolt Beranek and Newman Inc.

Then (Figure 15) he executes this DIAMOND procedure and it

works. Obviously, though, he is unsatisfied with it. It is only

capable of drawing the single diamond made up of an 8-rowed

triangle on top of an 8-rowed upside down triangle. In the next

few lines he erases, this limited drawing procedure and defines a

more general DIAMOND procedure with two inputs. DIAMOND :L: :V:

is defined as NUM :L: followed by UPD :V:. lie tries this

(Figure 19) with a 9-rowed triangle and it works at once.

But, he is still dissatisfied with the inelegance of the

definition. The procedure should be smart enough to work with a

single input and automatically match the interface between the

triangle made by NUM and the upside down triangle made by UPD.

So he again erases the current version of DIAMOND and rewrites it

as a single-input procedure DIAMOND :L: composed of NUM :L: and

UPD :L: + :L: -1. Upon trying DIAMOND 5 he finds that the seams

do not quite match -- the first row of X's made by UPD is the same

size as the last row of X's made by NUM (instead of two X's

smaller).

He fixes his procedure (Figure 20) by changing the input of

UPD to :L: + :L: -3. Now his procedure apparently satisfies his

goal. He exercises it several times with various inputs,

including (line ***151***) a random input. After listing his

procedures MIDDLE and TRIANGLE and asking for the time of day,

he starts to log out. In Figure 21 the analyst executes a

WERE, displays the procedure structure diagram for DIAMOND, and

executes the last lines of the dribble file.

4-17

Report No. 2625 Bolt Beranek and Newman

$DOALL
*** 3 *44 TO HARK : CHAR N

*** 4 *** 10 TYPE : CHAR :

*** 5 *** 20 TEST IS DIFFERENCE % N 3 " i " 0 "
*** 6 *** 30 IFTRUE STOP
*** 7 *4* 40 HARK : CHAR : DIFFERENCE : N " 1 id

*** 8 tt* END

Inc.

44* 9 444 TO SUPERMARK % CHARssNstLETIths
*** 10 0414 10 MARK : CHAR : N :

444 11 444 20 MARK s LET : H

*** 12 *** END
0** 13 444 TO RECTANGLE:LEI :ItIttNtsCHAR ::Ys

*** 14 *** 10 SUPERHARK : CHAR : Y : : LET : : H

4 15 *** 20 PRINT " "

*** 16 *** 30 TEST IS DIFFERENCE N " 1 " 0 "

*** 17 *** 40 IFTRUE STOP
*** 11 *** 50 RECTANGLE : LE! : M : DIFFERENCE : N : " 1 " s CHAR : :

Y

*** 19 *** END
*** 20 *** TO SORECIANGLE :Ms :N: :Y:
*** 21 444 10 SUPERMARK " " : Y : w X w : H

*** 22 *** 15 PRINT " "

*** 23 444 20 TEST IS DIFFERENCE : N " 1 ' " 0 '

*** 24 *** 30 IFTRUE STOP
*** 25 *** 40 RECTANGLE w X-w H : DIFFERENCE N : 1 " " Y :

*** 26 444 END
*** 27 444 TO FIND N

444 2E 444 30 TEST GREATERP " 2 " DIFFERENCE DIFFERENCE : N : TRIAL :

: TRIAL :

WI 29 *44 40 IFTRUE 6UTPUT : TRIAL :

44 30 44 50 MAKE " TRIAL " SUN : TRIAL : " 1 "

*** 31 *** 60 OUTPUT FIND : N :

flu* alts
It 1111 1t1N11I 11111111W1 IafittNe1 tit ellieit (1114t(I timmi toPirl aPP

Si Mei '1111110 1104 111141 Ihi

TO FIND :N:
30 TEST GREATERP 2 DIFFERENCE

DIFFERENCE :N: :TRIAL: :TRIAL:
40 IFTRUE OUTPUT :TRIAL:
SO MAKE "TRIAL" SUM :TRIAL: 1

END

Figure 10.

Report No. 2625 Bolt Beranek and Newman

*** 66 4** EDIT TRIANGLE

*** 67 *** 30 T IS SUM N : DIFF : N : 1 : NU :

*** 68 *** CND
41* 69 *** NUM 4

X

xxx

XXXXX

xxxxxxx
4** 70 44* 10 UPD : N

*** 71 **,, 10 MIDDLE SO " X " : N

*** 72 *** 20 PRINT "

4 73 *** 30 T IS : N

*** 74 *** IFT STOP
*** 75 *** 40 IFT STOP
*** 76 *** 50 MAKE : N : DIFF N : 2

*** 77 *** 60 UPD : N :

*** 78 *** END
*** 79 *** UPD4
UPD4 NEEDS A MEANING.
I HAS AT LINE 35 IN ODOLINE

le tr1 Irl TO UPD :N:
II el!ttt ti l' err
is 12:0 '
t$ IV/ It et'
tO i11:4 MO
tO ttll Ito eirrava olio I
tO oto

tte

10 MIDDLE SO "X" :N:
20 PRINT ""
30 TEST IS :N: 1

40 IFTRUE STOP
SO MAKE :N: DIFFERENCE :N: 2

60 UPD :N:
END

Figure 11.

4-19

Inc.

Report No, 2625 Bolt Beranek and Newman Inc.

-$HHERE

Al DRIBBLE LINE 79
HHICH IS

OEN
THE PROCEDURES HARK SuRERNARK RECTANGLE SUBRECIANGLE FIND HALF DELETE
STRIPE MIDDLE NUM TRIANGLE UPD HAVE BEEN DEFINED
'~DISPLAY °TRIANGLE"

Figure 12,

4 -20

TRIANGLE

MIDDLE

HALF MARK

FIND

Report No, 2625 Bolt Beranek and Newman Inc.

'WALL
te, 80 44s UPD 4

xxxx

XXXI(

xxxx

BREAK
1 NO Al LINE NO IN FIND

UPD

TO UPD :N:

10 MIDDLE 50 "X" :N:

20 PRINT ""
30 TEST IS :N: 1

40 IFTRUE STOP
50 MAKE :N: DIFFERENCE :N: 2

60 UPD :N:
END

Figure 13.

4-21

TRIANGLE

MI DD LE

HALF MARK

FIND

Report No. 2625 Rolt Beranek and Newman Inc.

*IDOALL
*** 21 4r4 TRACE UPD
*64 22 *4* UPD 4
UPD OF "4"

UPD OF "4"

UPD OF "4"

UPD OF "4'

UPD OF '4'

uPD Or '4'

XXXX

WO(

1k AX

KOJI

BREAK
I HAS AT LINE 10 IN MO'

*-200ALL

*** 24 $44 LIST UPD

(TRACED) TO UPD :N:
10 MIDDLE 50 "K" :N:
20 PRINT ""
30 TEST IS :N: 1

40 IFTRUE STOP
50 MAKE :N: DIFFEPENCE :N: 2

GO UPD :N:
END

4 86 44$ UPD 4
UPD OF "4"

UPD OF '4'

UPD OF '4"

UPD OF '4"

Wsp

Figure 14.

4-22

TRIANGLE

MIDDLE

HALF MARK

FIND

Roport No, 2625 Bolt Boranek and Newman Inc,

6** 88 **I CANCEL

CANCEL NEEDS A HEAVING.
1 HAS AT LINE 35 IN 0DOLINE
e4DOALL
666

2

$66

6

*66

UPD

89

90

91

92

93

94

OF

*** P : 4 :

4 P 6

6 EDIT UPD
*** 50 HAITI

*** ENO
q44 Op 4
'4w

" N " DIFF : N 2

UPD OF "2"

UPD OF "OW
IPXPA, I FAArk,XXXOJPAXXXXXXOXXXXXXXXXXXXXXXXXX

XXxXxxxxxWXXXxX/oArAokorxpkg,,,orkloorAxooxxxrxXxXXXXXXXXXXXXXXXXXXX
XXkxX

BREAK

$DOALL
t44, 97 so.* UPC, 0

OD OF "0"
10(Ykx0OXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXxXXXXYXxxxxxxXxxXxXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
kXxXXXXXXXXXXXXkxXxXXXxXXxXXXXxXXXXxXXXXXXXX

BREAK

1 HAS AT LINE 30 IN MARY

a

Oh
10 OlAt II 't
tt It't It its g

44 gum I
ti tart 41 Illfttloitt III
0 44 Ili
ttO

TO UPD :N:
10 MIDDLE 50 "X" :N:
20 PRINT
30 TEST IS :N: 1

40 IFTRUE STOP
50 MAKE "N" DIFFERENCE :N: 2

60 UPD :N:
END

Figure 15.

4-23

Report No. 2625 Bolt Beranek and Newman Inc.

.-1DOALL

4" 99 *44 HIDDLE 50 1 0

111
11
1111111111111111111111111111111111
PEAK
1 WAS AT LINE 20 IN MARK
kLIST HEM
-LIST HIDDLE

TO HIDDLE :x: :t:

10 MARY DIFFERENCE HALF :N: HALF PRODUCT COUNT :Y: :Y:

20 HARK ;N: 0:
END

&SDOALL
**s 101 *4* HARK 1 0

11
11
11
1

BREAV

WAS AT LINE 10 IN MARV
+LIST MARK

TO MARV :CHAR: :N:

10 TWE :CHAR:
20 TEST IS DIFFERENCE :N: 1 0

30 1FIROE STOP
40 HARK :CHAP: DIFrEPECE :N: 1

END

I-

11 IA, 04
111 11t)lt 11 *1'
!1 /lm .4
11 t1.11 11 INI 1

1PTEA ilt,
I1 ern '1' eimegatil III 1
11 101 sil
to

TO
10
20
30
40
50
60
END

UPD :N:
MIDDLE 50 "X" :N:
PRINT "
TEST IS :N: 1

IFTRUE STOP
MAKE "N" DIFFERENCE
UPD :N:

:N: 2

Figure 16.

4-24

Report No. 2625 Bolt Beranek and Newman Inc.

1

.MARY OF "1' AND "-t)5"

1

HARK OF "1" AND 4-56"
1

HARK OF "1' AND "-57"

HARK OF "1" AND "-58"

MARK OF "1" AND "-50"

HARK OF "1' AND "-SO"

HARK OF "1" AND "-Si"

MARY OF 'I" AND "-62"

HARK Or "1" AND "43:

HARK OF "1" AND
BREAK

.100ALL
to 110 44 ERASE ALL TRACES
444 111 *** UPD 5

044 112 444 10 DIAMOND
*** 113 *4* 10 NUN 8

SSS 114 SS* 20 UPD 15

S.* 115 *** END

Figure 17.

4-25

TO DIAMOND
10 NUM 8
20 UPD 15
END

Report No. 2625 Bolt Beranek and Newman Inc.

**4 116 *4i DIANOND

X

XXX

XXXXX

XXXXXXX

XXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXxXXxXXXXx
XXXXXXXXxXXXXxX

XXxXXXxxXXxxx
XxxxXxxxxxx
Xxxxxxxxx
xxxxxxx
XXXXX
XXX

K

*** 117 *4* EDIT DIAMOND
*** 118 *** 10 NUM 9
*** 119 *4* END
*** 120 *4* DIAMOND

0-0DOALL

*** 121 *4* ERASE DIAMOND
*** 122 *** TO DIAMOND : : V :

*** 123 *** 10 NUM : 1.

414* 124 *4* 20 UPD V :

4 125 *** END

Figure 18.

4-26

Report No. 2625 Bolt Beranek and Newman Inc.

466 126 *6* DIAMOND 9 15
X

XXX

XXXXX

XXXXXXX
XXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXX
XXXXXXX

XAxXX

APX

K

44DOALL

tot 128 666 EDIT DIAMOND
*ts 129 s*t END

666 130 44* ERASE DIAMOND
666 131 446 10 DIAMOND

: L

*** 132 *4* 10 NUM L :

6 133 441 20 URD SUM : I 01FF I : 1

*6t 134 666 END
4 135 666 DIAMOND 5

X

XXX

XXXXX

XXXXXXX
XXXXxxXXX
XXXXXXXXx
)(AK W.X

Ak

OAK

K

Figure 19.

4-27

Report Np, 2625 Bolt Beranek and Newman Inc.

$$$ 13G *** EDIT DIAMOND
$$$ 137 46$ 20 UPD SUM ; L DIFF L 3

**4 138 $$$ END
*** 139 *** DIAMOND 3

X

XXX

XXXXX

XXX

X

$$ 140 44 DIAMOND 7

BREAK

*44 151 *4' DIAMOND RANDOM
X

XXX

xxxxx

XXX

X

*44 152 444 LIST MIDDLE

TO MIDDLE :N: :X: :Y:

10 MARK 'II* DIFFERENCE HALF :N: HALF PRODUCT COUNT :X: :Y:

20 HARK :X: :Y:

END

*** 153 *** LIST TRIANGLE

TO TRIANGLE :N:
10 MIDDLE 50 "x" :NU:
20 PRINT *"
30 TEST IS SUM :N: DIFFERENCE :11: 1 :NU:

40 IFTRUE STOP
50 MAKE "NU' SUN :NU: 2

END

*** 154 44$ P TIME

t:3t AM
46$ 155 $66 LOGOUT

Figure 20.

4-28

Report No 2625 Bolt Beranek and Newman Inc.

.-INHERE

AT DRIBEILE'LINE 155

WHICH IS
LOGOuT
THE PROCEDURES NARY, supERHAAe RECTANGLE SuBRECTANGLE FIND HALF DELETE
STRIPE Nina NOM TRIANGLE OD DIAKOND DIAmOND DIAMOND HAVE BEEN DEFINED
44DISRLAY "DIAMOND"
a-

0)0ALL
tat 158 44*

4END-Or'FILE.

DIAMOND

De;-1 C3 NUM UPD

TRIANGLE MIDDLE

!!=n
J HALF MARK

FIND

Figure 21.

4-29

Report No. 2625 Bolt Beranek and Newman Inc.

4. Example 3

This dribble filo documents the development of a set of

programs written to generate grammatic sentences with randomly

chosen constituents. Figure 22 shows the execution of most of

the lines of the dribble file. Specifically, the procedures

CHOOSE, RANDOMCHOOSE, GEINOUN, GETVERB, GETADJ, GETCON,

MAKEDICTIONARY, LITTLESENTENCE, SIMPLESENTENCE, BIGSENTENCE,

TALK, KEEPTALKING, and TALKALOT have been defined. Most of these
procedures are short (1 - 4 lines) and their effects are quite

transparent.

CHOOSE has two inputs -- an index and a list of words. It

selects the word in the list specified by the index. RANDOMCHOOSE

has a list of words as input. It uses CHOOSE with a random digit

as an index, to select a word in a ten-word list at random.

GETNOUN, GETVERB, GETADJ, and GETCON are procedures that use

RANDOMCHOOSE to randomly select a noun, verb, adjective, or

connective, respectively, from correponding word lists of such

constituents. MAKEDICTIONARY creates these four word lists.

LITTLESENTENCE generates a random sentence of the form <noun>

<verb>, using GETNOUN and GETVERB.

SIMPLESENTENCE uses GETADJ and LITTLESENTENCE to generate a

random sentence of the form <adjective><noun><verb>. BIGSENTENCE

:SIZE: generates a random sentence of the specified number of

clauses, each of which is generated by LITTLESENTENCE. The

clauses are joined by connectives randomly generated by GETCON.

The procedure TALK simply invokes MAKEDICTIONARY and then

BIGSENTENCE. KEEPTALKING calls TALK (with a random digit for

:SIZE:) and then calls itself. Its effect is to generate

`randomly composed sentences of random size indefinitely.

4-30

Report No. 2625 Bolt. Beranek and Newman Inc.

TALKALOT :N: calls TALK (with a RANDOM input) :N: times; thus it

generates :N: random sentences of random size.

Figure 23 shows student trials of more of these procedures,

following the execution of a MERE by the analyst. The student

tries TALK with :SIZE: 1, then 3, then 2; then he tries TALKALOT

with ;N:=2; then he tries KEEPTALKING, whose execution is inter-

rupted with a BREAK at the end of the figure.

In Figure 24 the analyst diagrams the procedure structures

for LITTLESENTENCE and SIMPLESENTENCE. In Figure 25 he displays

the diagram of one of the top level procedures, KEEPTALKING.

The conventions used in these diagrams are straightforward. Each

box is associated with the procedure whose name labels the box.

A directed line from box P to box Laj denotes that procedure

P uses procedure Q. When P uses Q and both are in the same row

(level) of the diagram (because both are used by some other

procedure) then a directed arc is used to join E.] and m.

The usefulness of these diagrams in giving the analyst a

global overview of the program structure is evident here. Most

systems of programs, both those generated in extended student

projects and those produced in professional programming work,

are a great deal more complex than the sentence generator of this

example. Typically there are larger numbers of programs, program

interconnections, levels of call, and recursive parts; and the

components are larger and more opaque. Diagrams are especially

useful when used to aid the analysis of these more complex

program structures.

4-31

Report No. 2625 Bolt Beranek and Newman Inc.

666 2 eee 10 CHOOSE
: INDEX LIST

666 3 666 10 IF : INDEX : I 0 OUTPUT FIRST OF : LIST . ELSE OUTPUT
CHOOSE (: INDEX - I) (BUTFIRST OF : LIST :)

*** 4.4** END
eee 5 eee TO RANDOHCHOOSE

: LIST :

444 6 *4* 14 OUTPUT CHOOSE OF RANDOM AND : LIST :

*** 7 *** END
*** 8 *** 10 GETNOUN
44* 9 see 1 OUTPUT RANDOHCHOOSE : NOUNS :

4 10 444 END

644 11 ses 10 GETVERB
66* 12 64* 1 OUTPUT RANDOHCHOOSE : VERBS :

6 i3 **4 END
*** 14 *4* TO GETADJ
*** 15 *** 1 OUTPUT RANDOHCHOOSE : ADJECTIVES :

*** IS 444 END
*** 17 *** TO GETCON
*** 18 444 1 OUTPUT RANDOHCHOOSE : CONNECTIVES :

6 19 *** END

*** 20 *** TO HAKEDICTIONARY
*** 21 *** 1 HAKE ' NOUNS PROGRAMS BUGS CHILDREN GURUS TURTLES
LOVERS TRUTHS POEMS OuGGLES STARS '
*** 22 *** 2 HAKE " vERDS " " NOPv HURT RETON LEARN PLAY SING FALL
OUTPUT CELEBRATE LAuq4 "
*** 23 *** 3 HAVE " OJECTIvES 4 INCPEDIOJ GOOD NOISY BEAUTIFUL OLD
OVOID TRUE ABSTRACT OBriOuS ODONCHY "

45* 24 *45 4 HAKE CONNECIIAS SINCE AND WHILE THOUGH BUT AS YET IF
UNTIL BECAUSE "

,* 25 *** END
444 26 444 TO LITTLESENTENCE

666 27 *** 10 OUTPUT SENTENCE OF GETNOUN AND GETVERB
464 28 *** END
*** 29 *** TO SIMPLESENTENCE

*** 30 *** 10 OUTPUT SENTENCE OF GETADJ AND LITTLESENTENCE

*** 31 *** END
*** 32 *** 10 BIGSENTENCE

: SIZE :

*** 33 *** 10 IF : SIZE : 1 OUTPUT SIMPLESENTENCE ELSE OUTPUT
SENTENCES SIMPLESENTENCE GETCON BIGSENTENCE (: SIZE : - 1)

*** 34 *** END
*** 3S *** TO TALK : SIZE :

*** 36 *4* 1 MAVED1CTIONAPY
*** 37 *** 2 PRINT 91GSENTENCE SIZE :

*** 28 *** END
*64- 39 444 10 VEEPTALING
*** 40 t** 1 TALK RANDOM
*** 41 *** 2 VEEPTALIN0
*66 42 *** END
4 43 4** TO TALKALOT : N :

*** 44 666 10 IF : N : * 0 STOP ELSE TALK RANDOM
** 45 *** 20 TALKALOT N : - 1

66* 46 *6* END

Figure 22.

4-32

Report No. 2625 Bolt Beranek and Newman Inc.

.4WHERE
AT DRIBBLE LINE 46

WHICH IS
END

THE PROCEDURES CHOOSE RANDOCHOOSE CETNOuN GETwERB GETADJ GETCON
HAYEDICTIONAR(LITILESENTENCE SPIRLESENTENCE BIGSETENCE TALK
KEEPTALKING TALYALDI HATE BEEN DEFINED

.100TO 75
44* 99 *44 TALK 1

BEAUTIFUL STARS CELEBRATE
4** 50 1144 TALK 3

NOISY CHILDREN WORK WHILE GRONCHY r,HILDREN OUTPUT AS TRUE TRUTHS
CELEBRATE
ft 51 'ft* TALK 2

TRUE BUGS CELEBRATE BECAUSE GRONCHY GURUS RETURN
is* 52 tit TALKALOT 2

OVOID GURUS SING IF BEAUTIFUL GUGGLES SING WHILE 0000 POEMS RETURN SINCE
OLD TURTLES HURT THOUGH NOISY LOVERS WORK BECAUSE GRONCHY GURUS LEARN
SINCE OLD PROGRAMS FALL BECAUSE OLD GUGGLES FALL
BEAUTIFUL LOVERS SING IF NOISY GUGGLES CELEBRATE AS INCREDIBLE PROGRAMS
RETURN AND INCREDIBLE POEMS FALL YET BEAUTIFUL GURUS FALL IF GOOD BUGS
SING THOUGH BEAUTIFUL PROGPAr1S RETURN
Sv4 53 444 KEEPTALKING

ABSTRACT BUGS SING UNTIL IPuE TURTLES OUTPUT UNTIL NOISY POEMS LEARN
BREAK
I WAS Al LINE 10 IN CHOOSE

16 tkritOt Olt
ti Ir it lot $1, itti 1111 MAW
$6 16L$1146t o6ot

TO TALKALOT :N:
10 IF :N:=0 STOP ELSE TALK RANDOM
20 TALKALOT :N: 1

END

Figure 23.

4-33

Report No. 2625 Bolt Beranek and Newman Inc.

tDISPLA, "LiTTLESENTENCE*

0ISPLA('SIMPLESENTENCE"

LITTLESENTENCE

GETVERB GETNOUN

RANDOMCHOOSE

CHOOSE

SIMPLESENTENCE

LITTLESENTENCE GETADJ

GETVERB GETNOUN RANDOMMOSE

Figure 24,

4-34

CHOOSE

Report No. 2625 Bolt Beranek and Newman Inc.

6$DiS;':.A1 "rEEPTALehG"

KEEPTALKING

TALK

MAKEDICTIONARY BIGSENTENCE

GETCON SIMPLESENTENCE

LITTLE$ENTENCE :GETADJ

GETVERB GETNOUN RANDOMCHOOSE

CHOOSE

Figure 25.

4-35

Report No. 2625 Bolt Beranek and Newman Inc.

5. Example 4

The system of programs in this dribble file deals with the

extrapolation of sequence. Given a number sequence such as

1 2 3 4, the system tries to "guess" the next term so as to

satisfy the user. It does this by trying out various extrapolat-

tion procedures to see if any of them successfully extrapolate

the known terms, i.e., extrapolate 1 to 2, 2 to 3, and 3 to 4 in

the example given. If not, the system asks the user for the

extrapolation procedure he was using and, after assuring that it

successfully extrapolates the known terms, adds it to its growing

repertory of trial procedures.

These programs are developed in the first part of the dribble

file (Figures 26 and 27). The system comprises seven programs:

CASSANDRA, EXECUTE, CHECK, SECOND, SCAN, SUCCESS, and CONTINUE.

CASSANDRA (which is defined in lines ***2*** through ***9***) is

the top level program. It starts by asking its user to type in

a sequence. After accepting the sequence, it uses the procedure

SCAN to search its existing extrapolation procedures (in

:PROCEDURE BANK:) to see if any of these successfully extrapolate

the given sequence. If so, it stops; otherwise, it asks the user

to define the correct extrapolation procedure and, when done, to

resume operation by calling the procedure CONTINUE.

EXECUTE and SECOND (lines ***10*** through ***12*** and

20 through ***22***) are small utility procedures. EXECUTE

:PROCEDURE: :INPUT: performs the specified (single input)

:PROCEDURE: with the specified :INPUT: and outputs the result.

SECOND :LIST: outputs the second element in the specified :LIST:.

4-36

Report No. 2625 Bolt Beranek and Newman Inc.

CHECK :PROCEDURE: :SEQUENCE: (Lines ***13*** through

19) tests whether the specified procedure successfully

extrapolates the successive terms in the specified sequence. If

so, it outputs "TRUE"; if not "FALSE". For example, consider

the procedure ADD1 whose output is 1 plus its input:

TO ADD1 :INPUT:
1 OUTPUT (:INPUT: + 1)

END

CHECK of ADD1 "11 12 13" outputs "TRUE" sJnce ADD1 of 11 = 12

and ADD1 of 12 = 13) but CHECK of ADD1 "2 4 6" outputs "FALSE"

(since ADD1 of 2 * 4).

SCAN :SEQUENCE: :PROCEDURES: (lines ***24*** through

33) scans through the given list of extrapolation procedures

one at a time with CHECK, to find whether one of these procedures

successfully extrapolates the known terms in the given sequence.

If so, it uses this procedure to extrapolate a next term and

(using the procedure SUCCESS) determines whether or not the

extrapolated next term is acceptable to the user. If unacceptable,

it tries again with the remaining procedures.

The procedure SUCCESS (Figure 27) simply asks the user whether

the extrapolated next term is acceptable and outputs "TRUE" or

"FALSE" accordingly. The last procedure in the set, CONTINUE,

is called by the user after he inputs a new extrapolation procedure.

CONTINUE asks for the name of the new procedure, uses CHECK to

check its correctness on the given user sequence. If it is

correct, it is added to the list of extrapolation procedures.

At this point CONTINUE, as the most recently defined procedure,

is displayed in mini-print at the lower left of the display.

4-37

Report No. 2625 Bolt Beranek and Newman Inc.

Figure 28 shows the beginning of the student's execution of

these procedures. The analyst begins reviewing the student's work

with a $DOALL. Immediately a difficulty appears. The execution

of line ***53*** (which calls CASSANDRA to start the system)

requires the user of the system to provide an input. CASSANDRA

types SEQUENCE?.., and waits for the user to type in a sequence.

What is the analyst to do at this point? He has two options --

he can provide his own input or he can replicate the input used

by the student in the next line of the dribble file. The analyst

probably wants to see the student's input, even if he decides to

use a different one.

Thus, it is valuable for the analyst to have a facility for

looking ahead in the dribble file to see the student's inputs on

the next line (or lines if a multi-line input chain is involved).

During this look-ahead process, execution should be suspended

until the analyst has previewed as many lines as he wishes to see.

And he should be able to indicate which of these student input:

lines he will want to be ignored during the subsequent execution

(because, for example, he wishes to replace these with his own

inputs).

Following the exemplars of user-defined analysis procedures

described in Part 3, the analyst of this example has written such

a lookahead procedure, called $LOOKAHEAD. The procedure is shown

and discussed later; first we illustrate its use in the subsequent

analysis. To suspend operation of the dribble file execution the

analyst types BREAK (on line 4 of Figure 28). LOGO responds (I

WAS AT LINE 20 IN CASSANDRA) and the analyst invokes the lookahead

procedure by typing $LOOKAHEAD.

4-38

Report No. 2625 Bolt Beranek and Newman Inc.

The procedure asks the analyst if he wishes to look ahead to

the next line (MORE?...). He responds with YES. The procedure

then types dribble file lino ***54*** (prefixed with NM to

indicate that it is a previewed line). This line is the student's

input sequence 1 2 3 4. The procedure then asks whether this line

is to be ignored during subsequent execution (IGNORE?...). The

analyst responds YES. He is then asked whether he wants to look

ahead to the next line (MORE?...). He responds YES and is shown

line ***55*** (which is the title line'of the procedure ADD1, an

extrapolation procedure being defined by the student). The

analyst indicates that he does not wish to ignore this line.

Then he responds NO to MORE?..., since he does not wish to look

ahead any more at this point. $LOOKAHEAD then types **RESUME

AT ***53*** and continues processing there, at the point where

it had left off before.

In response to SEQUENCE?... the analyst types 1 2 3 4. The

program then asks for the definition of a procedure that generates

that sequence (I CAN'T DO THAT ONE ...). The analyst invokes the

next several lines of the dribble file, with a $DOALL. This

enters the student's extrapolation procedure ADD1, and then invokes

(line ***59***) the procedure CONTINUE, which asks its user for

an input (WHAT IS THE NAME OF YOUR NEW PROCEDURE?) .

At this point the analyst types BREAK to interrupt processing

and calls $LOOKAHEAD to preview the next two lines in the file.

These lines enter the name of the student's extrapolation procedure

(ADD1) and ask for the list of student extrapolation procedures

(PRINT :PROCEDURE BANK:) . The analyst then resures execution

with a $DOALL, and executes the dribble file through line

62 which calls CASSANDRA. After CASSANDRA's request for

the input of a sequence, the analyst once more BREAK's (end of

Figure 28).

4-39

Report No. 2625 Bolt Beranek and Newman Inc.

As shown in Figures 29 and 30, he carries on the analysis

of the student's work in this fashion using $LOOKAHEAD extensively,

throughout the rest of the dribble file.

Figure 29 shows the student's trial of CASSANDRA with the

sequences 1117 1118 1119 and 1 11 111 1111 and his definition of

another extrapolation procedure, TAG1. Figure 30 shows a later

portion of the dribble file, by which time the extrapolation

procedures ADD1, TAG1, TAGLAST, and TIMES2 have been introduced

(line ***95***). The last few lines show the student input of

the sequence 1 2, his rejection of the extrapolated next term 3

(which was generated by the extrapolation procedure ADD1), and

his acceptance of the extrapolated next term 4 (generated by the

procedure TIMES2).

The procedure $LOOKAHEAD, and its main subprocedures are

listed in Figure 31. These are very transparent procedures.

$LOOKAHEAD1 :N: processes the :N:th line ahead of the current one.

If this line is not to be previewed (a negative response to

MORE?...), the lookahead process is terminated, and execution is

resumed at the point where lookahead started (after spacing two

blank lines with $SKIP 2 to set off the interrupted execution

lines). If this line is to be previewed, it is displayed by

$DISP. If it is to be ignored during subsequent execution, the

comment "IGNORE" is appended (using $ADD) to the contents of

"(dribble no) D" (which denotes a fatal error, as described in

the section of the User's Guit.ic dealing with parsing).

Figures 32 and 33 show the last part of the analysis. At

the top of Figure 32 the analyst executes a MERE to list all

the procedures defined at the end of the student's session. The

analyst then invokes $ALLDESCR to list all the descriptors used

4-40

Report No. 2625 Bolt Beranek and Newman Inc.

in the dribble file linos -- these have previously been entered

in (dribble no) "B". The system responds with the single

descriptor RECURSIVE. The analyst then executes $FINDLINES 1

"RECURSIVE" to list all lines, starting with line 1, which contain

that descriptor. The system prints out the associated lines --

18, 27, 32, and 56. The analyst next prints "RECURSIVE LIST: to

list all recursive procedures. These are CHECK, SCAN, and ADD1.

It is interesting to note that ADD1 is listed as recursive

because of a lack of sophistication in the procedure $EXAMINEEL

that generates the RECURSIVE descriptor. In dribble file line

56 the ADD1 title line was changed from TO ADD1 to

TO ADD1 :N:. $EXAMINEEL simply sees the repeat of the procedure

name ADD1 in this line, failing to observe that this line

supplants the original title line.

The blank procedure forms $EXAMINEEL are filled in by the

analyst to test whether a lino is recursing and, if so, to label

it with the descriptor "RECURSIVE". The blank procedure form

$NICEP is filled in by the analyst to search (dribble no) "B"

descriptor lines for the descriptor "RECURSIVE" and to enter the

names of procedures having such lines on "RECURSIVE LIST:. These

procedures, along with the blank procedure form $NOTE, are listed

in Figure 32.

$NOTE is filled in by the analyst to modify the display

names ofrecursive procedures by prefixing and suffixing them

with **. With this modification, procedure structure diagrams

explicitly label their recursive components. In Figure 33 the

analyst has displayed the structures CASSANDRA and CONTINUE.

These diagrams clearly show that the procedures SCAN and CHECK

are recursive.

4-41

Report No. 2625 Bolt Beranek and Newman Inc.

*** 2 *** TO CASSANDRA
*** 3 *** 10 TYPE " SEQUENCE?.., "

*** 4 *** 20 HAKE " SEQUENCE " REQUEST
*** 5 444 30 PRINT : EmPlY
rr* 6 *** 40 TEST SCAN OF : SEQUENCE : AND : PROCEDURE BANK :

*** 7 *** 50 IFTRuE STOP
444 t 444 64 PRINT " t CAN'T DO THAT ONE, TELL ICE HON TO DO IT (DY

DEFINING A PROCEDURE FOR GENERATING THE SEQUENCE) . WHEN YOU'RE DONE
PLEASE TYPE 'CONTINUE'. "

444 9 *** END
*** 10 *** TO EXECUTE ; PROCEDURE : AND : INPUT :

*** 11 *** 10 DO SENTENCE OF ' OUTPUT 0 AND (SENTENCE OF : PROCEDURE :

AND : INPUT :)

444 12 *** END

*** 13 *4* TO CHECK : PROCEDURE : AND : SEQUENCE :

*** 14 *** 10 TEST ENPTyP OF BUTFIRST OF
: SEQUENCE :

4** 15 *** 20 IFTRUE OUTPUT ° TRUE "

*** 16 *** 30 TEST IS t SECOND OF : SEQUENCE :) EXECUTE OF : PROCEDURE
: AND (FIRST OF : SEQUENCE ;)

*** 17 rrr 40 IFFALSE OUTPUT 0 FALSE "
*** 18 *44 SO OUTPUT CHECK OF : PROCEDURE : AND (BUTFIRST OF : SEQUENCE

)

444 19 444 END
4 20 *4* TO SECOND : LIST :

4 21 944 10 OUTPUT FIRST OF BuTFIRST OF
: LIST :

4 22 * END
44* 23 ors TO SCAN : SEQUENCE : AND : PROCEDURES :

444 24 44* 10 TEST EmPltP OF PROCEDURES :

*** 25 .4* 20 IFTRoE OUTPUT U FALSE '

*** 26 *** 30 TEST CHECK OF (FIRST OF : PPOcEDuREs :) AND : SEQUENCE :

*** 27 444 MO, trFALSE OuTPuT SCAN OF : SEQUENCE : AND (BUTFIRST ui :

PROCEDURES :)

*** 28 *** SO HAKE " NEXT TERM " EXECUTE OF (FIRST OF : PROCEDURES)

AND (LAST OF : SEQUENCE :)

4** 29 *** 60 TEST SUCCESS OF : NEXT TERM :

*** 30 444 70 IFTRuE PRINT SENTENCE ' THE WINNING PROCEDURE WAS " t

FIRST OF : PROCEDURES :)

44* 31 *4* 80 IFTRuE OUTPUT 0 TRUE °

*** 32 *** 90 OUTPUT SCAN OF : SEQUENCE : AND (BUTFIRST OF : PROCEDURES
)

*** 33 *AT* END

Figure 26.

4-42

Report No. 2625 Bolt Beranek and Newman Inc.

*** 34 *** TO SUCCESS : TEPH
*** 35 *** 10 T1PE SENTENCES " IS THE NEXT TERM " TERM " "

*** 36 *** 20 HAKE * ANSNER " REQuEST
tt* 37 444 30 TEST IS : ANSuER " 'ES "

*** 38 *** 40 IFTRUE OuTPO " TPuE
444 39 *** 50 OUTPUT 74,SE
444 40 444 END

444 41 *44 TO CONTINUE
444 42 44* 10 TYPE " WHAT IS THE NAME OF YOUR NEW PROCEDURE? "
444 43 444 20 MAKE " NEW PROCEDURE " REQUEST
4144 44 *** 30 PRINT 1 EMPTY :

*** 45 *** 40 TEST CHECK OF : NEW PROCEDURE : AND : SEQUENCE :

444 46 444 50 IFFALSE PRINT SENTENCES " NO, " : NEW PROCEDURE : " DOES
NOT GENERATE THE SEQUENCE THAT YOU GAVE ME, TRY YOUR PROCEDURE ON
SUCCESSIVE TERMS AND YOU WILL SEE THAT IT DOESN'T WORK. "

444 47 Itts GO IFTRUE MAKE " PROCEDURE BANK " SENTENCE OF : PROCEDURE
BANK : AND : NEW PROCEDURE :

4** 411 *44 70 IFTRUE PRINT " THANKS FOR THE NEN RULE. "

400LINE
4 49 MI END

It tra11671
lb lilt ::"V It IA It4 tt PItellAll
1$ tt:t r:,:g7611, 1:4-411
1) Intl is All
IS till ti:1 CP let

q:/6 61; cm11,1 hi 141 Its Or. KO. 111 vOtS ttO4OtOsO Os $1041Si4 ?la:OCAS r01
I) 111:3C13 tft/ tr, ir:6.1448 moo 643 046 114141661
;$ 1;114 11161 164 14 tit
Imo

Figure 27.

4-41

Uoport No. 2625 Bolt Boranok and Nowman Inc.

..000A1L

04, 51 *44 CASSANDRA

SEQUENCE?...
BREAK
I HAS AT LINE 20 IN CASSANDRA
-LOOKAHEAD
110'C ?... YES

MCI**. 54 t** 1 2 3 4

IGNORE?...YES
HORE?...YES
CtEtt444 55 444, TO ADD1
IGNORE?...NO
MORE?._NO
**RESUME A14,* 53 soi

SCQUENCE?...I 2 3 4

I CAN'T DO THAT ONE. TELL ME HON 10 00 IT (BY DEFINING A PROCEDURE FOR
GENERATING THE SEQUENCE) NHEN ((WPC DONE PLEASE TYPE 'CONTINUE'.
f$DOALL
*** 55 *** 10 ADD1

444 SG 4*4 TITLE 10 ADD1 : N
444 57 *4* 1 OUTPUT : N 1

t44 SS If** END
4 59 *** CONTINUE
NHAT IS THE NAME OF YOUR NEN PROCEDUPE?
BREAK
I HAS AT LINE 20 IN CONTINUE
44LOOKANEAD
HORE?...Y
(ICI(*** 60 444 ADD1

IGNORE?...Y
MORE?...Y
MIT*** 61 *** PRINT : PROCEDURE BANK :

IGNORC?...N
MORE?...N
RESUME AT* 59 ***

NHAT IS THE NAME OF YOUR NEN PROCENROADD1

THANKS FOR THE NEW RuLE.
44DOALL
*** 61 *** PRINT : PROCEDOE BANe
ADD1
#4* 62 4*4 CASSANDRA
SEQUENCE?...
BREAK
I HAS AT LINE 20 IN CASSANOPA

Figure 28.

4-44

Report No. 2625 Bolt Beranek and Newman Inc.

0-LOOYAHEAD
mORE?...v
ItC(ttrr 63 r.4.* 1117 1113 1110
1GNORE?...Y
n0RE?...y
tc(ccs*s G4 *4+ YES
1GNORE?...y
110PE?..,Y

((Mors C5 rr(, CASSANDRA
16NORE?...N
110RE?...N

RESUME AT* 62 a**

SEOUENCE?...1 2 3 4,

IS THE NExT TERN 5 ?YES
THE WINNING PROCEDURE WAS ADD1
-*DOALL
*ar 65 *41 CASSANDRA
SEQUENCE?...
BREAK
I WAS Al LINE 20 1N CASSANDRA
4-1LOOKAHEAD
MORE?...Y
IMO:** 66 *11* i 11 111 1111

IONORE?...Y
MORE?...Y
CLICC*4* 67 *44 TO TAG1 4

IONORE?...N
MORE?...N

RESUME AT* 65 *44

SEQUENCE?...1 11 111 1111

I CAN'T DO THAT ONE. TELL ME HOW TO DO IT (BY DEFINING A PROCEDURE FOR
GENERATING THE SEQUENCE) . WHEN YOU'RE DONE PLEASE TYPE 'CONTINUE'.
4-4DOALL

*** 67 *** TO TAG1 : N :

*** CS *** i OUTPUT WORD OF : N : AND 1

*** 69 *** END
44# 70 ts* CONTINUE
WHAT IS THE NAME OF YOUR NEW PROCEDURE?,

Figure 29.

4-45

Report No. 2625 Bolt Beranek and Newman Inc.

ilDOALL
*so 95 *4* PRINT : PPOCEOuPE BAND.
ADDI TAG1 TAsLAst IlmES2
*44 In 444 cAsSANDPA
SEQUENCE?...
BREAK
I UnS AT LINE 20 IN CASSANDRA
44LOCKAHEAD

4 I 4

0 4 I

0 0

''RESUME Alm, OS 444

SEQUENCE?...99 108 306

IS THE NEXT TERM 792 ?YES
THE NINNING PROCEDURE NAS TIMES?
fSDOALL
444 09 444 CASSANDRA
SEQUENCE ?.
BREAK
I HAS AT LINE 20 IN CASSANDRA
sLFOOKAHEAD
mORE?...1,

TUCCos# 100 sss 1 2

IGNORE?...y
mORE?...y
TtEtt444 101 sors NO
IGNORE?...y
m0RE?...r
MCC*** 102 os* YES
IGNORE?...y
mORE?..,Y

TETTE*** 103 ssi SAVE CASS2 CASS2
IONORE?...N
mORE?...N
ssREsumE AT*** 99 *sr

SEQUENCE?...1 2

IS THE NExT TERM 3 ?NO
IS THE NEXT TERM 4 ?YES
THE HIMNING PROCEDUn IIES2
4000ALL
444 104 444 sERASEALL
44$ 105 444
*444ENO-OF-FILE401$
4.

Figure 30.

4-46

Report No 2625 Bolt Beranek and Newman Inc.

FLIST OLOOKAHEAD*

TO $100YAHEAD
10 OLOOKAHEAD1 1
END

LIST 4LOOYAHEAD1

TO OLOOKAHEAD1 :N:
10 TYPE wHORE?...
20 TEST OYESP REQUEST
30 IFFALSE PRINT SENTENCES wriRCSUHE Alto," :DRIBBLE NO: "**4*
40 IFFALSE 'SKIP 2
50 IFFALSE DO THING SENTENCE :DRIBBLE NO: "N"
CO IFFALSE STOP
70 TOE "CCM'
80 GDISP SUM :DPIDDLE NO:
90 TYPE "IGNORE?..."
1C3 OYESP REOUEST OADD SENTENCE SUM :PIDDLE NO: :N: "D" "IGNORE"
110 OLOOKAHEAD1 SUM :N: 1

END

4-LIST OYESP

TO 4YESP :ANS:
10 IF IS :ANTS: "Y" OUTPUT "TP0E"

20 IF IS "YES" OUTPUT "TPUE"
30 OUTPUT "FALSE"
END

LIST OADD

TO OADD :PLACE: :NES:
10 HAKE :PLACE: SENTENCE THING :PLACE: :HES:
END

Figure 31.

4-47

Boport No. 262S Bolt Beranek and Newman lno.

+ONHERE

AT DRIBBLE LINE 105
WHICH IS

THE PROCEDURES CASSANDRA EXECUTE CHECK SECOND SCAN SUCCESS CONTINUE 4%1.1)1
TAGI TAGLAST TIMES2 HAVE BEEN DEFINED
oiALLOESCR

RECURSIVE

c4FINDLINES 1 "RECURSIVE"
RECURSIVE IN 12 --- 50 OUTPUT CHECY OF : PROCEDURE : AND C BUTFIRST OF :

SEQUENCE :)

RECURSIVE IN 21 --- 40 IFFALSE OUTPUT SCAN OF : SEQUENCE : AND
OUTFIRST OF : PROCEDURES)

RECURSIVE IN 32 SO OUTPUT SCAN OF : SEQUENCE : AND C BUTFIRST OF :

PROCEDURES)

RECURSIVE IN 5S --- TITLE TO ADD1 1 N :

+PRINT :RECURSIVE LIST:
CHECK SCAN ADD1
+.

+LIST tExAMINEEL

TO OEXAWINEEL

10 IF NOT IS FIRST :CURRENT LINE: :CURRENT PROC: STOP

20 IF NOT 6HP "RECURSIVE" THING SENTENCE :DRIBBLE NO: "8" OADD SENTENCE
:DRIBBLE NO: "0" "RECURSIVE"

END

4-

+LIST ONOTE

TO SNOT(:PROC:

10 (F ORECURSEP :PROC; OUTPUT WORD WORD "00" :PROC:
20 OUTPUT :PROC:
END

+LIST 6N10EP

11 *4 /1

TO tNICEP

10 IF 411P "RECURSIVE" THING SENTENCE :DRIBBLE NO: "B" HAKE "RECURSIVE
LIST" *UNION :CURRENT PROCEDURE: :RECURSIVE LIST:

20 OUTPUT "TRUE"
END

Figure 32.

4-4.8.

Report No. 2625 Bolt Beranek and Newman Inc.

.olsool! "CASSAIIDPA"

OISPLAr "WiTitior

CASSANDRA

SCAN

SUCCESS **CHECK**

SECOND

CONTINUE

CHECK

EXECUTE SECOND

Figure 33.

4-49.

EXECUTE

APPENDIX A

LOGO REFERENCE MANUAL

I. A Look at LOGO

We introduce LOGO by writing several small procedures. The
following examples serve to show what LOGO "looks like". Several
features are used without definition or even explanation, where
we think their meanings are clear from context. All of LOGO is
comprehensively described in later sections.

LOGO, as an interpretive language, can execute single commands
directly. Thus,

+PRINT SUM OF 2 AND 2 (The user's typing is underlined)
4

But, the most important feature of LOGO is that such commands
can be incorporated in user-written procedures. The definition
of any procedure results in an object which is treated just like
any primitive. Thus, in a very real sense, as the user writes
his own procedures, he is gradually extending the basic language
to more exactly fill his needs.

A very simple (although by no means simplest) procedure, for
example, prints the double of its input.

TO DOUBLE /N/
10 PRINT SUM OF /N/ AND /N/
END

This procedure, DOUBLE, is now "part" of LOGO.

+DOUBLE 123
246
+DOUBLE WORD OF 1 AND 1
22

If the concatenation of DOUBLE with other procedures is desired,
DOUBLE should OUTPUT rather than PRINT its results; OUTPUT mean-
ing that the result is given to the calling procedure. The
modified procedure is:

TO DOUBLE /N/
10. OUTPUT SUM OF /N/ AND /N/
END

This new version of DOUBLE can be used in direct commands,

+PRINT DOUBLE DOUBLE DOUBLE 3
24

-1-

or can be used as the basis for other procedures,

TO QUADRUPLE /N/
10 OUTPUT DOUBLE OF DOUBLE OF /N/
END

and so on. This very natural use of functions in LOGO is partic-
ularly valuable, since to program a problem a user can keep on
breaking it up until he sees subproblems which he feels will be
easy to program. This heuristic is used by sophisticated
problem-solvers generally, whether or not computer programming
is involved.

An extension of this LOGO facility for using procedures in
defining other procedures is its ability to handle recursive
procedure definitions. The recursion can be a linear one, which
is equivalent to iteration, as in the following procedure which
calculates the factorial function: n! E n (n-1) "' 2'1.

TO FACTORIAL /NUMBER/
10 TEST IS /NUMBER/ 1
20 IF TRUE OUTPUT 1 (1! 1)

30 OUTPUT PRODUCT OF /NUMBER/ AND
(FACTORIAL OF DIFFERENCE OF (n! = n (n-1)!)
/NUMBER/ AND 1)

END

+PRINT FACTORIAL OF 100
9332621544394415268169923885626670049071596826438162146859296389521
7599993229915608941463976156518286253697920827223758251185210916864
000000000000000000000000

LOGO makes few distinctions between numbers and more general types
of string. Thus, a procedure to reverse a string looks very much
like FACTORIAL.

TO REVERSE /STRING/
10 TEST IS /STRING/ /EMPTY/ (The reverse of the empty string
20 IF TRUE OUTPUT /EMPTY/ is the empty string.)
30 OUTPUT WORD OF LAST OF /STRING/(The reverse of the nonempty

AND (REVERSE OF BUTLAST OF string is the string formed by
/STRING /) following the last character by

END the reverse of the rest of the
string.)

("AND", "OF", and parentheses are optional "noise words" for
convenience in writing expressions.)

(-PRINT REVERSE OF "JABBERWOCKY"
YKCOWREBBAJ

-2-

2, The LOGO Language

2,0 Mechanics

To start using LOGO, a person must establish communication with
the computer and specify that he wishes to work with LOGO. The
conventions for doing this vary from system to system and are,
therefore, outside the bounds of this manual.

To indicate that it is ready for use, LOGO types a back-arrow (+)
either immediately or in response to the pressing of the key
labeled "RETURN". This means that LOGO is ready to receive an
instruction line. After the user types in the desired line, he
again presses the RETURN key. This action returns the carriage
and gives the command line to LOGO for execution. The LINE FEED
key also returns the carriage, but does not cause command execu-
tion; thus an arbitrarily long instruction can be entered.

The typing of a line may be aborted at any time by pressing the
key labeled "RUB OUT".

The key labeled "BREAK" is used to stop the execution of the
currant instruction and return control to the user.

The use of LOGO is terminated by typing the command "GOODBYE" or
Its abbreviation "GB".

Other LOGO system facilities, such as erasing, editing, and
filing, are discussed in the section on program manipulation.

2,1 LOGO Objects and the PRINT Command

LOGO contains two kinds of objects, LOGO words and LOGO sentences.
A LOGO word is an arbitrary string of printing teletype charac-
ters excluding quote marks. A LOGO sentence is an arbitrary
string of LOGO words, separated by spaces. If a user types
multiple spaces between words of a LOGO sentence, all but one
are automatically eliminated.

To simply print a LOGO object on the teletype, the PRINT command
is used.

+PRINT "YMICHN4LK"
YI:RCHN4LK
+PRINT "32425"
32425

(a LOGO word)

(a LOGO word)

+PRINT "HI THERE LOGO"
HI THERE LOGO
+PRINT MI

(a LOGO sentence)

(the "empty" object)
(prints out an empty line)

LOGO objects are delimited by quote marks. If a word is not so
delimited, it is taken as a LOGO command or operation. Integer
objects are an exception -- for these, quotes are optional.

+PRINT 123450
123450

2.2 Constructing a Procedure

Using the "built-in" LOGO commands and operations, such as PRINT,
we construct procedures either to manipulate LOGO objects or to
produce some desired external effects. For example, a LOGO
procedure for drawing a small triangle out of + marks is:

TO TRIANGLE
>5 PRINT "+"
>10 PRINT "++"
>32 PRINT "+++"
>40 PRINT "++++"
>END

To get LOGO to perform this procedure, we merely type the proce-
dure name:

A procedure definition includes three different kinds of lines.
The first line of the definition is called the title line. It
begins with the LOGO command TO which indicates to LOGO that we
are writing a procedure whose name immediately follows. (TO is
not part of the procedure name.) The procedure name must not be
a command or operation currently used by LOGO. (This excludes
built-in commands like PRINT as well as user-defined procedures
in the current workspace.) And, like the LOGO built-in commands
and operations, procedure names must not contain quotes or
slashes.

After reading the title line, LOGO types back the wedge mark (>).
This indicates that it is ready for the next line of the defini-
tion. The actions of the procedure are specified by the instruc-
tion lines immediately following the title line. Each of these
is prefaced by an integer, a tine number. Following the line
number is the instruction itself, such as a LOGO command, The
instructions are not executed during this definition phase --
they are merely entered, checked for local syntax errors, and
stored away for subsequent execution. Later, when the procedure
is to be performed, LOGO will execute these instruction lines in
increasing order, by line number, even if they are not set down
in such order. The END line indicates the close of the definition.

2.3 Procedures With Inputs

The procedure TRIANGLE always has the same effect. This contrasts
with the built-in PRINT command whose effect varies with its
input. As well as procedures with no inputs, like TRIANGLE, we
can write procedures that have inputs, for example the following
one

TO PSYCH /ANYTHING/
10 PRINT "WHY DO YOU SAY"
20 PRINT /ANYTHING/
30 PRINT "?"
END

To use PSYCH, we must give it, one input:

+PSYCH "YOUR NAME IS ELIZA"
WHY DO YOU SAY
YOUR NAME IS ELIZA

+PSYCH "2+2=4"
WHY DO YOU SAY
2+2=4

By adding a word or sentence enclosed within slashes -- a place-
holder or dummy input -- to its title line, we denote that PSYCH
requires one input. When PSYCH is used, LOGO replaces the dummy
input, wherever it occurs in the procedure definition, by the
desired input (such as "2+2=4").

-5-

We write and use procedures with more than one input along
analogous lines. For example:

TO -- REVERSE /FIRST/ /SECOND/ /THIRD/
10 PRINT /THIRD/
20 PRINT /SECOND/
30 PRINT /FIRST/
END

REVERSE needs three inputs.

+REVERSE "A" "8" "C"
C

8

A

+REVERSE "ABC"
THERE ARE 2 INPUTS MISSING FOR REVERSE

In the second example, we typed only one input. (When an illegal
instruction is attempted, LOGO responds with an appropriate error
message. A list of such messages is included in Section 3.5.)

2,4 LOGO Operations

A LOGO command (such as PRINT, TO, END, and GOODBYE) always results
in some external action. For example, PRINT causes its input to
be printed on the teletype. An operation, however, passes on a
LOGO object for further use within LOGO. For example, the LOGO
operation SUM requires two inputs (integers), and outputs their
sum. This new object can either be used as an input for PRINT,
if we wish to have it typed, or as an input to a LOGO operation
or procedure.

+PRINT PRODUCT OF 2 AND 7
14

+PRINT PRODUCT OF 2 AND (SUM OF 3 AND 4)
14

Here, the output of SUM, 7, is one of the two inputs to the opera-
tion PRODUCT which, in turn, passes its output, 14, to PRINT.
[OF and AND are completely optional and are used only to improve
clarity and readability of expressions for the user. OF may be
used after any command, operation, or procedure name. AND may be
used between inputs. Balanced parentheses also may be used to
improve readability. (See the section following on composition.)]

-6-

LOGO includes operations of different kinds, for example, those
for concatenation and decomposition given below.

Concatenation

WORD concatenates two given words, its inputs, to form a new word
as its output. SENTENCE concatenates its two inputs, either
words or sentences, to form a new sentence as its output.

+PRINT WORD OF "UP" AND "DOWN"
UPDOWN
+PRINT SENTENCE OF "UP" AND "DOWN"
UP DOWN
+PRINT SENTENCE OF "GO MAN" AND "GO"
GO MAN GO
+PRINT WORD OF "GO MAN" AND "GO"
THE INPUTS TO WORD MUST NOT BE SENTENCES
I-

Decomposition

FIRST outputs the first character of its input, if the input is
a word (or the first word, if the input is a sentence). BUTFIRST
outputs everything but the first of its input (i.e., the second-
through-last characters of word inputs, or the second-through-
last words of sentence inputs). LAST and BUTLAST are defined
similarly.

+PRINT FIRST OF "CAT"

+PRINT BUTFIRST OF "CAT"
AT
4-PRINT LAST OF "CAT"

+PRINT BUTLAST OF "CAT"
CA
+PRINT FIRST OF "FEE FIE FOE FUM"
FEE
+PRINT BUTFIRST OF "FEE FIE FOE FUM"
FIE FOE FUM
+PRINT LAST OF "A"
A
+PRINT BUTLAST OF "A"

(LOGO prints the empty word)

-7-

The output of FIRST or LAST is always a LOGO word. The output
of BUTFIRST or BUTLAST, however, is of the same type (i.e., LOGO
word or sentence) as its input. This means that a single word
can sometimes be a LOGO sentence. Thus, the output of BUTFIRST
OF "THE CAT" is the LOGO one-word sentence "CAT".

4PRINT FIRST OF BUTFIRST OF "THE CAT"
CAT

Arithmetic

The operations SUM, DIFFERENCE, PRODUCT, and QUOTIENT take two
inputs, which must be integers, and output the designated arith-
metic result. The operation RANDOM has no input and outputs a
digit between 0 and 9 generated in a pseudo-random manner.

-PRINT SUM OF 2 AND 98
100
+PRINT DIFFERENCE OF 2 AND 98
-96
+PRINT PRODUCT OF 17 AND 5
85

+PRINT QUOTIENT OF 17 AND 5
3

+PRINT RANDOM
8

+PRINT RANDOM
2

4

(the integer quotient)

Other LOGO "built-in" operations are described later.

2.5 Composition

The inputs of LOGO operations do not have to be literal LOGO
objects like "CAT" or "39". Instead, as we saw, they may be
outputs of other operations. The following examples illustrate
how operations can be composed or "chained".

-PRINT SENTENCE OF "A B" AND WORD OF "CD" AND "E"
A B CDE
+PRINT LAST OF (FIRST OF THE CAT")
E

+PRINT DIFFERENCE OF (WORD OF 11 AND 22) AND 122
1000

-8-

Let's consider how LOGO scans and executes these composite instruc-
tions by considering the first example above. LOGO scans an
instruction line word-by-word from left to right. During the
scanning process it identifies each element and notes its type.
Thus:

(1)
(2)
(3)

ELEMENT TYPE

PRINT
SENTENCE
OF

Command, needs one input
Operation, needs two inputs
"Noise" word

(4) "A B" LOGO sentence literal
(5) AND Noise word
(6) WORD Operation, needs two inputs
(7) OF Noise word
(8) "CD" LOGO word literal
(9) AND Noise word
(10) "E" LOGO word literal

After the input line is scanned, LOGO returns to the beginning
of the line and executes it as follows:

(1) Fetch the first element PRINT. Its one input remains to be
found: fetch the next element.

(2) PRINT's one input will be the output of SENTENCE. SENTENCE,
in turn, needs two inputs: fetch the next element.

(3) OF is a noise word, legal in this context. Ignore it.
We are still looking for two inputs.

(4) "A B" is an acceptable first input for SENTENCE. The second
input needs to be found for SENTENCE: fetch the next element.

(5) AND is a noise word, legal in this context. Ignore it.
One input remains to be found for SENTENCE.

(6) SENTENCE's second input will be the output of WORD. WORD,
in turn, needs two inputs -- LOGO words: fetch the next
element.

(7) OF is a noise word, legal here. Ignore it. We are still
looking for two inputs for WORD.

(8) "CD" is an acceptable first input for WORD: fetch the next
element.

(9) AND is a noise word, legal here. Ignore it. We are still
looking for the second input for WORD.

-9-

(10) "E" Is an acceptable second input for WORD. There are no
furt.er inputs being sought.

(11) WORD outputs "CDE" to SENTENCE as its second input.

(12) SENTENCE outputs "A B CDE" to PRINT as its one input.

(13) PRINT causes A B CDE to be printed on the teletype page.

(14) The processing of the line is complete. LOGO returns
control to the user.

This process can be regarded perhaps more conveniently as a
successive simplification of the original line as the outputs of
various operations are determined. As an illustration, consider
the following example:

+PRINT PRODUCT OF SUM OF 2 AND 3 AND DIFFERENCE OF 4 AND 5 AND 6

Unlike before, we immediately remove all noise words, thus
obtaining:

+PRINT PRODUCT SUM 2 3 DIFFERENCE 4 5 6

We again go word-by-word from left to right. Finding upon reach-
ing the 3 that we can complete the execution of SUM, we do so,
obtaining:

4PRINT PRODUCT 5 DIFFERENCE 4 5 6

This execution of SUM does not permit any previously encountered
operations to be executed so we keep on going to the right. We
find that we can next complete the execution of DIFFERENCE.
Doing this, we obtain:

4PRINT PRODUCT 5 -1 6

Again, looking back at previously encountered operations, we find
that PRODUCT can now be executed. This results in:

4PRINT -5 6

Looking back once more, Ye find we can execute PRINT. We do so,
thereby obtaining the printout -5. Since the first command on
the original line has been executed, ae deem the execution of
the line to be complete. There lz, however, something remaining
on the line and th!s causes LOGO to print the error message:

"6" IS EXTRA

LOGO then returns control to the user.

-10-

Parentheses

Parentheses may be used in instructions to set off any expression
that is, or can be used as, a LOGO input, The following examples
of such use are valid:

-PRINT SUM (2) 3
-PRINT SUM 2 (3)
-PRINT (SUM 2 3)
+(PRINT SUM 2 3)

All these instructions cause the printout 5.

The following examples show some invalid uses of parentheses.

+PRINT (SUM) 2 3

+PRINT (SUM 2) 3

-PRINT SUM (2 3)

None of the above parenthesized expressions are meaningful LOGO
inputs. The attempted execution of these lines will cause LOGO
to print error messages such as MATCHING (? and MISSING)2.

Two infix expressions such as

2 + (3 X 4) and (2 + 3) X 4

whose operations and inputs occur in the same order, but which
are differently parenthesized, yield different results. Thus,
the use of parentheses can change the order of evaluation of
infix expressions. This is not so with LOGO prefix expressions.
So long as parentheses are used correctly -- that is, to enclose
inputs or possible inputs -- they cannot change the result of
evaluating any LOGO prefix expression.

2.6 Procedures With Outputs

LOGO operations, by definition, output when they are executed.
LOGO procedures can be written which output in just the same way
as operations. To do this, the one-input LOGO command OUTPUT
is used. Its use is illustrated:

TO DUBBLE /SOMETHING/
10 OUTPUT WORD OF /SOMETHING/ AND /SOMETHING/
END

+PRINT DUBBLE "TROUBLE"
TROUBLETROUBLE

Note that, as in the case of built-in operations like FIRST or
SUM, we need to preface DUBBLE with PRINT to cause the output
of DUBBLE to be typed. In line 10 of DUBBLE, OUTPUT causes the
result of execution of its line toloe passed.back as an input
to the PRINT command which called DUBBLE. The LOGO command
OUTPUT takes a single input and passes this back as an input to
the command, operation, or procedure which called the present
procedure. OUTPUT then causes resumption of the execution of
the line to which it returned its input. At this point the
outputting procedure effectively vanishes. Clearly, the command
OUTPUT can only be used within a procedure.

User-defined procedures which output can be composed in the same
way as built-in operations. Thus:

+PRINT SUM OF DUBBLE 3 AND 4
37

+PRINT DUBBLE DUBBLE DUBBLE "B"
BBBBBBBB

+TO QUADRUBBLE /STUFF/
>10 OUTPUT DUBBLE OF DUBBLE OF /STUFF/
>20 PRINT "I AM ALL DONE"
>END
QUADRUBBLE DEFINED
+PRINT QUADRUBBLE OF "NO"
NONONONO

In the last example note that the command in line 20 was not
executed. The OUTPUT in line 10 terminated the execution of
UtliDRUBBLE as it passed back "NONONONO" to PRINT. Thus we now
have two means of terminating a procedure, either by
the END co:7,mand or the OUTPUT command.

2.1 Naming

LOGO ob,!ect can be given a name by use of the V:AKE comrnand.
taks two inputs and makes the first the name of the second.

Thus:

+MAKE "DIGIT" "TOE"

We say that "D.13:T" Is the name of "TOE" and that "TOE" is the
thing of "DIGIT". To retrieve the thing of a name, we use the
one-input LOGO operation THING. Thus:

+PRINT THING OF "DIGIT"
TOE

-12-

So that a name refers to precisely one thing at any time, MAKE
replaces the old thing of the name by the given new thing, the
second input of MAKE. For example:

+MAKE (WORD OF "DIG" AND "IT") (SENTENCE OF "BIG" AND "TOE")
+PRINT THING OF "DIGIT"
BIG TOE

Note that the previous thing of "DIGIT", "TOE", has been replaced
by "BIG TOE".

Initially, the empty thing, "", is taken as the thing of any LOGO
name. Therefore:

+PRINT THING OF "ABRACADABRA"

(The thing "" has been printed.)

For introductory purposes, an extended form of MAKE is available.
This is used by pressing the return key directly after typing in
the word MAKE. LOGO will then type NAME: and wait for the user
to type in the desired name and press the return key. LOGO then
responds by typing THING:. After the user types the desired
thing and presses the return key, the command is executed in
exactly the same way as the standard form. Thus:

+MAKE
NAME:
THING:

11111

11211

+PRINT THING OF "1"
2

Because of the special importance of names, LOGO provides a
shorthand notation for the operation THING. /IRVING/ means
precisely the same as THING of "IRVING". Thus:

,.PRINT SUM OF /1/ AND /1/
4

We have already encountered the use of slashes as delimiters for
LOGO dummy inputs within'procedure definitions. For example:

-13-

TO PYTHAGORAS /#/ /011/
10 PRINT SUM (PRODUCT /4/ /SU) (PRODUCT /00/ /00/)
END

When a procedure is executed, the occurrence of 3lashed objects
in the title line results in implicit MAKE executions. Each is
given as its thing the actual input in the corresponding position
following the procedure name. For example, typing the command
PYTHAGORAS,3 4 results in the name "#" being given the thing "3"
andthe name "##" being given; the thing "4". /.../ means
THING OF "..." whether the assignment was made by a procedure
call or a MAKE command.

The names made by implicit MAKEs as a result of the execution of
a title line have a special status. These names vanish from
the list of names currently known to LOGO upon termination of the
procedure. This is true even if the initial assignment of a thing
to a dummy name is changed by a MAKE within the procedure.

TO SHOW-OFF /M/ /N/
10 PRINT SENTENCE OF "M IS" /M/
20 PRINT SENTENCE OF "N I S" /N/
END

+SHOW-OFF "TURTLE" "EGGS"
M IS TUULE
N IS EGGS
+PRINT 121.

+PRINT /N/

If a dummy name is already known to LOGO, LOGO sets up a special
version of the name expressly for use within the procedure. As
before, each dummy name is given as its thing the corresponding
input. Thus:

+MAKE "M" "IRVING"
+SHOW-OFF "EGGS" AND "TURTLE"
M IS EGGS
N IS TURTLE
+PRINT /M/
IRVING

Such special treatment is given to a dummy name independently in
each procedure where it occurs. Thus:

-14-

TO SHO /A/
10 PRINT SENTENCE "/A/ IS" /A/
20 SHOO (BUTFIRST OF /A/)
30 PRINT'SENTENCE "/A/ IS" /A/
END

TO SHOO /A/
10 PRINT SENTENCE "/A/ IS /A/
20 SH000 (BUTFIRST OF /A/)
30 PRINT SENTENCE "/A/ IS" /A/
END

TO SH000 /A/
10 PRINT SENTENCE "/A/ IS" /A/
END

+SHO "START"
/A/ IS START

/A/ IS TART

/A/ IS ART

/A/ IS TART

/A/ IS START

(Printed by SHO. At this point
there is only one /A/)
(Printed by SHOO. Now there are
two versions of /A/)
(Printed by SH000. Now there are
three versions of /A/)
(Printed by SHOO. Two versions of
/A/ remain since SH000 has finished)
(Printed by SHO. Only one version
of /A/ is left)
(All versions of /A/ have vanished)

2.8 Conditional Operations

LOGO includes a number of operations called predicates, whose
outputs are one of the words "TRUE" or "FALSE". NUMBERP is
the LOGO number predicate.

-PRINT NUMBERP OF "777"
TRUE
+PRINT NUMBERP OF "SEVEN"
FALSE
+PRINT NUMBERP CF WORD OF 2 AND 2
TRUE

WORDP and SENTENCEP are the LOGO word predicate and LOGO sentence
predicate:

-15-

+PRINT WORDP OF 711
TRUE
+PRINT WORDP OF "WORDS WORDS WORDS"
FALSE
+PRINT SENTENCEP OF "I C A R U S"
TRUE

Two useful predicates requiring two inputs are the identity
predicate, IS, and the predicate GREATERP for comparing two
numbers. IS outputs "TRUE" if its inputs are the same, and
"FALSE" if they are different; GREATERP outputs "TRUE" if its first
input is st,2ictly greater than its second input, and "FALSE"
otherwise.

+PRINT IS SUM OF 2 AND 2 "4"
TRUE
+PRINT IS SUM OF 2 AND 2 "04"
FALSE
+PRINT GREATERP 2 2

FALSE

Some predicates require one of the words TRUE" or "FALSE" as
inputs. These include the conjunctive predicate BOTH and the
disjunctive predicate EITHER. BOTH outputs "TRUE" if both of
its inputs are "TRUE"; EITHER outputs "TRUE" if either one or
the other or both of its inputs are "TRUE".

+PRINT BOTH (IS WORD OF "2" AND "2" "22") AND (NUMBERP OF "SEVEN")
FALSE
+PRINT EITHER (GREATERP 2 3) AND (WORDP OF "FALSE")
TRUE

A predicate's output can be tested for "TRUE" or "FALSE" and
subsequent instruction execution can be made to depend upon the
result. LOGO provides a command, TEST, to facilitate such tests.

+TEST IS "1" "1" (Clearly true)
IF FALSE PRINT "1 IS NOT 1" (So this line is not executed)

+IF TRUE PRINT "IT IS!" (But, this one is)
IT IS!
4-IF TRUE PRINT "YES YES YES" (And this one also)
YES YES YES

-16-

TEST takes one input which must evaluate to "TRUE" or "FALSE".
Its effect is to mark a "truth flag" correspondingly (i.e., to
true or false). The associated command IF TRUE takes an instruc-
tion line as input and executes this line only if the truth flag
is marked true. (Similarly with IF FALSE, when the truth flag is
marked false.) Note that IF TRUE and IF FALSE take command lines
as inputs -- in this respect they are different from other LOGO
commands.

Using TEST and IF TRUE, new predicates can be defined by LOGO
procedures. Thus:

+TO NOT /INPUT/
>10 TEST /INPUT/
>20 IF TRUE OUTPUT "FALSE"
>4 OUTPUT_ "TRUE"
>END
NOT DEFINED
+PRINT NOT IS "1" "2"
TRUE

2.9 ,Recursion

A procedure may use another procedure in its definition, as we
saw in Section 2.6 where QUADRUBBLE was defined using DUBBLE.
An even more powerful capability comes about by using a procedure
in its own definition. An example of such a self-referential, or
recursive, procedure is the following one, FIND, which outputs
the /N/th element of /LIST/.

+TO FIND /LIST/ /N/
>10 TEST IS /N/ 1

>20 IF TRUE OUTPUT (FIRST OF /LIST/)
>30 OUTPUT FIND OF (BUTFIRST OF /LIST/)

AND (DIFFERENCE OF IN/ AND 1)
>END

4-PRINT FIND OF °Z X W" AND 1

:-4-PRINT FIND OF "Z Y X W" AND 3
X

FIND outputs immediately only in the case where /N/ is 1. It
reduces all other cases to that one by creating a number of
distinct copies of FIND. For the last example shown, three

separate copies of FIND were used for execution of that instruc-
tion. The process was as follows:

The command line is:
PRIN1 FIND "Z Y X W" 3

PRINT needs one input, so the execution goes to the next element
on the line, which is FIND. Two literal inputs follow FIND, so
FIND is executed line by line. Line 30 of FIND with the current
inputs is

30 OUTPUT IND "Y X W" 2.
Thus, in order to finish execution of our original procedure
FIND, we must perform FIND "Y X W" 2. A new copy of FIND, let
us denote it (for ourselves) as FIND*, is used for this purpose
and this copy is given inputs "Y X W" and 2. When line 30 of
FIND* is reached, we have

30 OUTPUT FIND "X W" 1.
Thus, still another copy of FIND is required, which we call
FIND**, with inputs "X W" and 1. The execution of FIND** results
in an output of "X" to FIND* (since the value of /N/ for this
copy is 1) and FIND** "vanishes'. FIND* now outputs "X" to
FIND, which outputs "X" to PRIM'.

We can display this sequence of successive procedure calls with
the inputs and output associr.ted with each of them in a compact
way using the LOGO command 'MACE. We indicate that we wish to
TRACE the procedure FIND in its subsequent executions as follows.

4-TRACE FIND
(LOGO puts a trace on FIND and
returns control to the user)

The effect of TRACE is l'ulustrated next, using the example just
discussed.

+PRINT FIND OF "Z Y X W" AND 3
FIND OF "Z Y X W" AND "3"

FIND OF "Y X W" AND "2"
FIND OF "X W" AND "1"
FIND OUTPUTS "X"

FIND OUTPUTS "X"
FIND OUTPUTS "X"
X
4-

(This is our FIND*)
(Our FIND**, the third copy of FIND)
(FIND** outputs to FIND*)
(FIND* outputs to FIND)
(FIND outputs to PRINT)
(PRINT prints "X")

Note that TRACE prints the title line of each TRACEd procedure
invoked, listing the inputs it is called with, and note that it
prints a new line each time a procedure outputs or ends. The
title line and output line of each procedure are indented the
same number of spaces.

-18-

In the procedure FIND the execution of the command OUTPUT
requires invoking and executing another copy of the procedure.
In some recursive procedures the execution of other operations
in the recursion line may be deferred as well. One such proce-
dure is COLLAPSE, which takes a sentence and collapses it into a
word.

4-TO COLLAPSE /S/
>10 TEST IS /S/ /EMPTY/ (/EMPTY/ denotes the empty LOGO object, "")
>20 IF TRUE OUTPUT /EMPTY/
>30 OUTPUT WORD OF (FIRST OF /Si) AND

(COLLAPSE OF BUTFIRST OF /S/)
>END

4-PRINT COLLAPSE OF "CAN YOU READ ME"
CANYOUREADME

In the recursion line of COLLAPSE, line 30, the execution of the
operation WORD, as well as the command OUTPUT, must be deferred.
This is shown in the following trace.

4-TRACE COLLAPSE
+-PRINT COLLAPSE OF "MARES EAT OATS"
COLLAPSE OF "MARES EAT OATS"
COLLAPSE OF "EAT OATS"

COLLAPSE OF "OATS"
COLLAPSE OF ""
COLLAPSE OUTPUTS ""

COLLAPSE OUTPUTS "OATS"
COLLAPSE OUTPUTS "EATOATS".

COLLAPSE OUTPUTS "MARESEATOATS"
MARESEATOATS

The same form of recursion used with COLLAPSE was shown in
Section 1 in the definitions of FACTORIAL and REVERSE. More
complex and powerful forms of recursion can be created by the
advanced user. These can even include recursions which are not
reducible to iteration, such as the Ackerman function (the
generalized exponential function used in recursive function
theory).

-19-

3. Program Manipulation

Up to now we have studied only those parts of the LOGO language
necessary for writing executable LOGO programs (the operations,
commands, names, etc., and the rules governing their relations
and usage). This chapter deals with those facilities of LOGO
that aid a user in his programming work at the computer terminal.
These include listing, editing, erasing, abbreviating, storing,
and retrieving.

3.1 Editing

A. Editing a Line

There are a number of ways to modify the instruction line being
typed in, at any time before the carriage return key is pressed.
This "editing" capability works with both direct instruction
lines and those which are part of a procedure definition:

If the backslash character "\" is pressed, this character is
typed and its effect is to erase the character preceding it.
The backslash can be typed more than once to effect multiple
erasures. Thus:

+PINT \\NRINT 4\ 5
5

÷PRIN T4 \\\T 4
4

Pressing the CTRL key and W simultaneously results in a number
of backslashes being typed, sufficient to completely erase the
preceding LOGO word. Denoting this action by We, then:

+PRINT "THE QUIKWc.\\\\QUICK BROWN FOX"
THE QUICK BROWN FOX

The more drastic action of pressing the RUBOUT key erases the
entire line. To show this has been done, the computer erases out
the back arrow (+) preceding the "rubbed out" line, using a #.
Denoting this editing action by (FUTogD, then:

*PRINT "THE QUICK BROOW QiUBOTT)
4-

-20-

B. Editim a Procedure

There are several editing commands which can be used only while a
procedure is being defined, (The computer indicates that we are
in the process of defining a procedure by typing a ">" rather
than a "+" when it is ready to receive the next line.) The
command EDIT, followed by a procedure name, is used to modify
the definition of a previously defined procedure. LOGO responds
to this command by typing a ">" to indicate that we are again in
defining mode. After the desired changes have been made, the
command END terminates the procedure definition just as before.

Inserting_ a Line

LOGO arranges the lines of a procedure in order of increasing
line number. Thus, we can "insert" an instruction line between
two already typed lines simply by giving it a number between the
line numbers of the two given lines. It is good programming
practice to number procedure lines by fives or by tens, to leave
space for thi possibility.

Assume we had previously defined REV:

TO REV /A/ /6/ /C/
10 PRINT /C/
20 PRINT /A/
END

and we wish to insert the instruction line PRINT /8/ between
lines 10 and 20, as line 15,say. Then:

4-EDIT REV
>15 PRINT /6/
>END
REV DEFINED

This effects the desired insertion.

Changing an Entire Line

We can change a previously entered instruction line by simply
typing the desired instruction line, giving it the same number.
The first version vanishes. We can retype the title line by
typing TITLE, followed by the new title line.

Typing a line number and carriage return results in that line
containing no instruction -- effectively erasipg the line
previously having that line number. A neater way to erase a line
is by using the command ERASE LINE which completely expunges
the line indicated,

The current version of any line can be shown by the LOGO command
LIST LINE 1 which prints out the indicated line. Similarly,
LIST TITLE prints the title line.

Changing Part of a Line

Often it is easier to modify an existing line than to completely
retype it. To do this, we type EDIT LINE , giving the appro-
priate line number. The computer will place the line number at
the beginning of the next line. To have it type the next word of
that line, we press the control key (CTRL) and N simultaneously.
(This action is denoted by Nc.) To get the rest of the line, we
type Rc (the control key and R). These two actions, together
with "\" and We described above, can be used together, as in the
following example:

>LIST LINE 30 (Note that we are already in defining mode,
30 PRONT SUM OF AND 2 the only context in which LIST LINE and
>EDIT LINE 30 EDIT LINE are meaningful)
30 NCPRONTWC\\\\PRINT NCSUM NcOF 3 RC AND 2 (carriage return)

(Since Mc and Rc don't type out anything on the teletype, the
above line looks readable.)

>LIST LINE 30
PRINT SUM OF 3 AND 2

Listing and Erasing the Entire Procedure

LIST (procedure name) results in the procedure being typed ,?.xactly
as it stands at that moment. ERASE (procedure name) results in
the procedure being expunged.

Nearly any LOGO instruction line including LIST (procedure name)
and ERASE (procedure name) can be executed when in the procedure
definition (>) mode, The only exceptions are those like TO and
EDIT which involve the definition of yet another procedure while
we are already defining one.

The following example shows a typical editing session involving
the use of most of the features described in this section.

-22-

-LIST REVERSE
TO REVERSE /Y/ (Should be /X/ in place of /Y/)
10 TEST IS /X/ /EMPTY/ (Missing is 15 IF TRUE OUTPUT /EMPTY/)
20 OUTPUT WORD (LAST /X/)

(REVERS BUTLAST /X/) (Incorrect spelling)
END
+EDIT REVERSE (We could have used EDIT TITLE and then
>TITLE TO REVERSE /X/ Nc twice to have LOGO type TITLE TO
>15 IF TRUE OUTPUT /EMPTY/ REVERSE)
>EDIT LINE 20
20 NCOUTPUT NCWORD NC(LAST NC/X/) NC

(REVERS \E RCBUTLAST /X/) (The \ deletes the space)
>LIST LINE 20
20 OUTPUT WORD (LAST /X/ (REVERSE

BUTLAST /X/)
>LIST REVERSE

(skips one line)
TO REVERSE /X/
10 TEST IS /X/ /EMPTY/
15 IF TRUE OUTPUT /EMPTY/
20 OUTPUT WORD (LAST /X/) (REVERSE

BUTLAST /X/)
>END (Note there is no END command since
REVERSE DEFINED definition of reverse is not complete)

3.2 Abbreviating

To reduce the user's typing, the computer recognizes short forms
for most commands. These are called abbreviations. For example:

P S "CAT" "DOG"
CAT DOG

is the abbreviation for PRINT and S for SENTENCE. The long
forms are substituted internally for the abbreviations as soon
as the abbreviations are typed in. Thus, if we type in a procedure
definition making use of abbreviations and then list it, the
computer types it back to us in expinded form. The set of
built-in abbreviations is given as part of Section 5.

The user can make his own abbreviations with the command
ABBREVIATE (two inputs). The first input can be any LOGO command,
operation, or procedure, or combination of them. The second is
the word which will become the abbreviation. The "noise word" AS
may be inserted between the two inputs of ABBREVIATE.

-23-

-ABBREVIATE "PRINT SUM" AS "+"
311 115fl

8

An abbreviation can refer to just one operation. If we type:

-ABBREVIATE "RANDOM" "R"
-ABBREVIATE "REVERSE" "R"

the first meaning of "R" is lost.

Built-in abbreviations can also be changed.

+ABBREVIATE "POWER" "P" causes the abbreviation P for PRINT to
vanish.

Listinq_and Erasing Abbreviations

LIST ALL ABBREVIATIONS results in the typing of all user-defined
abbreviations, for example, we now have:

4LIST ALL ABBREVIATIONS

R: REVERSE
P: POWER
+: PRINT SUM

ERASE ALL ABBREVIATIONS is used to erase all abbreviations, and
ERASE ABBREVIATION (abbreviation) to erase the indicated abbre-
viation. For example,

+ERASE ABBREVIATION "+"
++ 2 3

+ IS UNDEFINED

3.3 The User Workspace

Upon logginc.2 in on a computer and requesting LOGO, the user has
at his disposal all built-in features of the LOGO language. These
include the LOGO operations and commands, reserved names, such as
/EMPTY/, and standard abbreviations. The user is also assigned
a workspace within the computer memory. The additions he makes
to the LOGO built-ins are kept in this workspace. These possible

24

additions include user-defined procedures, user-defined abbrevia-
tions, and those user-defined names which were not created by
execution of procedure title lines. Each class of objects in the
user workspace can be listed or erased separately:

LIST ALL PROCEDURES
ERASE ALL PROCEDURES

LIST ALL NAMES
ERASE ALL NAMES

LIST ALL ABBREVIATIONS
ERASE ALL ABBREVIATIONS

Abbreviations are the only built-ins which can be changed by the
user. ERASE ALL ABBREVIATIONS not only erases all user abbrevia-
tions, but restores the built-in abbreviations to their original
state.

The commands LIST ALL and ERASE ALL combine the listing and
erasing commands for all these three types of objects in user
workspace. Thus, LIST ALL provides an exact accounting of every-
thing in the user workspace and ERASE ALL completely empties the
workspace. Any procedure, name, or abbreviation can be listed
or erased individually, as described in preceding sections.

The command LIST CONTENTS lists just the title line of every
procedure in workspace. For example:

+LIST CONTENTS

TO REVERSE /X/
TO FACTORIAL /N/

GOODBYE, as well as exiting from LOGO, results in the complete
loss of the user workspace. LOGO provides commands to save the
contents of the workspace for subsequent use. If such retention
is desired, it must be effected before GOODBYE is typed. The
saved material can then be retrieved at any later time. This
process of "SAVEing" and "GETting"'is described next.

3.4 Filing

LOGO provides a facility for users to file away their work. The
basic unit of a LOGO file is an entry. Each entry has a two-word
e):try name. The first word of the entry name is the file name
and is common to all the entries in a file (it is commonly the

-25-

name of the user who owns the file). The second word of the
entry name distinguishes the entry from other entries in the
same file. Examples of entry names are JIM EQUATIONS, NANCY
RANPOMSENT, JIM NIM, NANCY EQUATIONS.

An entry is created by the command SAVE. The entry thus created
contains everything in the user workspace -- that is, everything
that would be listed by LIST ALL. The user workspace is left
unchanged by the SAVE command. For example,

+SAVE GRANT ARITH
4-

In this example, the entry GRANT ARITH is created. If GRANT
ARITH already exists, the old entry is replaced by the new one.
Although the user workspace may subsequently change, the contents
of the entry GRANT ARITH will remain as they were at the time
they were saved. When the user gives the command GOODBYE, the
workspace is destroyed but all entries are retained.

In a well-organized file, each entry contains a related group of
procedures, names, and abbreviations (for example, those that
are used for playing NIM, or those used in solving linear
equations). By first erasing irrelevant parts, the user can
save any desired subset of his workspace.

To retrieve an entry from a file, the command GET is used.

+GET GRANT ARITH
4-

The contents are copied into, and become a part of, the student's
current workspace -- the entry itself is unchanged. The additions
to the workspace prcvided by a GET are inserted in the same way
as if a user had typed them in. Thus, abbreviations and names
supersede existinl; ones and procedures in the entry having the
same names as those in the workspace are not entered.

There are three different tyres of objects possible in the user
workspace, and hence in any entry. These parts of an entry can
be listed by the commands

LIST PROCEDURES
LIST NAMES
LIST ABBREVIATIONS

-26-

(where the dashes
indicate the two-word
entry name)

LIST ENTRY lists everything in the entry -- all three
parts. LIST CONTENTS gives the title line of each pro-
cedure contained in the entry indicated.

LISTing any part of an entry does not result in its being copied
into the active workspace. Only GET will do this.

The command LIST ALL FILES causes LOGO to type all existing file
names. The command LIST FILE causes LOGO to type the entries
in a given file. To remove an entry from a file, the command
ERASE ENTRY is used:

4-ERASE ENTRY GRANT ARITH
*GET GRANT ARITH
THERE IS NO ENTRY GRANT ARITH

When all entries in a file are erased, the file itself is auto-
matically eliminated.

LOGO also provides two operations for working with LOGO files.

SIZE outputs a number proportional to the amount of
space the entry indicated occupies in memory.

ENTRIES outputs a sentence of the second words of all
entry names contained in the file indicated.

3.5 Debugging

The LOGO system has built-in aids to help users find the "bugs"
in their programs. A bug has one of two effects. It may cause
the computer to try to execute an illegal instruction or it may
direct the execution of instructions that are legal but which
produce a wrong answer or no answer at all, e.g., it may put the
computer in a loop that never ends.

In the first case, the computer immediately stops executing
instructions and types out a diagnostic message describing the
error and telling where it occurred. (Some typical diagnostic
messages are listed at the end of this section.) An example of
this is:

4TO GREET /X/
>10 PRINT SENTENCE- OF "HELLO," AND /X/
>20 PRONT 1'HOW ARE YOU?"
>30 PRINT "SEE YOU LATER"
>END
GREET DEFINED

-27--

+GREET "JOHN"
HELLO, JOHN

PRONT NEEDS A MEANING.
I WAS AT LINE 20 IN GREET

There was a bug. The diagnostic message designates the type of
error and where the error was found. EDIT can be used to make
the necessary changes.

+EDIT GREET
>20 PRINT "HOW ARE YOU?"
>END
GREET DEFINED

+GREET "JOHN"
HELLO, JOHN
HOW ARE YOU?
SEE YOU LATER
4-

When the procedure GREET was being defined, the computer didn't
object when line 20 was typed in, even though it did not know
the meaning of PRONT. The reason is that a procedure PRONT might
have been written later, after GREET was defined but before it
was executed.

In this example, the computer's diagnostic message pointed to the
source of the error and thus was directly helpful. Often,
however, we get situations where the illegal instruction isn't
the direct cause of the error. For example, in the course of
running a procedure the computer may say

DIFFERENCE OF "AB" AND "1"? INPUTS MUST BE NUMBERS.
I WAS AT LINE 30 OF SAM.

+EDIT SAM
>LIST LINE 30
30 OUTPUT SUM OF /X/ AND PRODUCT OF /X/ AND DIFFERENCE OF
/Y/ AND "1"

Assuming the arithmetic expression given is the one intended, the
error is not contained in line 30. Somewhere earlier in the
execution, /Y/ was made "As" instead of a number. This type of
error then is of the second type mentioned above. The computer
gets past .he faulty instruction and the defective result shows
up as a bug later when the computer is performing another
instruction, perhaps in a different procedure. In this situation
the diagnostic is less helpful and the error is more difficult to
track down.

-28-

The TRACE command, described in the section on recursion, is often
useful in finding errors, especially those resulting in a faulty
recursion. TRACE, followed by a procedure name, results in a
special "flag" being placed with the procedure. Then, whenever
the procedure is called in an execution, its title line is typed
with the current values of its dummy variables. When the proce-
dure outputs, or is otherwise completed, an appropriate typeout
is made and the output, if any, is shown. If a procedure is in
TRACE mode, this is indicated whenever the procedure is LISTed.
To get out of TRACE mode, the command ERASE TRACE, followed by
the procedure name, is used. ERASE ALL TRACES is a more drastic
LOGO command.

Another useful approach, when the difficulty lies within a known
procedure rather than "between" procedures, is to insert extra
lines in the defective procedure to type intermediate results.
These help to pinpoint the error and can be removed after a
correction has been made.

Diagnostic Messages

There are about 100 diagnostic messages. The following are some
typical ones.

YOU NEED / MARKS AROUND EACH INPUT.
TITLE MUST BE FOLLOWED BY "TO".
END WHAT? YOU'RE NOT DEFINING ANYTHING.
GO WHERE?
LIST ALL WHAT?
DON'T TRY TO DEFINE ANOTHER PROCEDURE INSIDE THIS ONE.
DIVISION BY ZERO.
DON'T USE THE EMPTY WORD FOR A NAME.
ERASE WHAT?
THE INPUT TO TEST MUST BE A PREDICATE.

The following comments mean that the number of inputs found on
the line was not correct. The exact form of comment depends on
the particular parsing error.

. IS EXTRA
THERE ARE INPUTS MISSING FOR

In the following diagnostics, the underscored words are filled
in appropriately by LOGO when the error occurs. The words given
here are typical examples.

MATCHING"? (or L or (or))
PRONT NEEDS A MEANING.
TRUMP ISN'T COMPLETELY DEFINED. (END command not yet given.)

29

THERE IS NO LINE IA.
SUM OF "A" AND "5"? INPUTS MUST BE NUMBERS.
TEST IS USED BY LOGO. (The user cannot define a procedure

called TEST)
OF ISN'T A PROCEDURE.
THERE ISN'T ANY FILE GRANT
REVERSE IS ALREADY DEFINED.
YOU'RE ALREADY DEFINING REVERSE.
YOU'RE ALREADY EDITING REVERSE.
REVERSE CAN'T BE USED AS AN INPUT. IT DOESN'T OUTPUT.

The comment I AM IN TROUBLE. TELL YOUR TEACHER indicates a
computer failure.

3.6 Interrupting Execution

The execution of a direct line or procedure is interrupted by
the momentary depression of the key'labeled BREAK. The pressing
of the BREAK key is effective, whether the computer is performing
internal operations or printing on the teletypewriter. When this
occurs, LOGO types "BREAK" as well as the procedure name and line
it was then executing, and then returns control to the user.
(This "positional" information is omitted if a direct line was
interrupted.) The state of the execution is preserved -- all
intermediate results are kept. These include all the local names
set up by the use of dummy variables in procedures which had not
yet terminated. LIST ALL NAMES gives all these "local" names in
order opposite to the order of their creation. Control has
returned to the user exactly as though these intermediate results
did not exist. They do not get saved by a SAVE command, nor do
they interfere with any procedure definition or execution. They
can, however, slow down execution somewhat because they take up
room in the user's workspace. The only real effect these inter-
mediate results have is initiated by the no-input command GO.
This results in the interrupted calculation being resumed exactly
from the point left off. The only loss that can occur is that of
some printing that was in process when BREAK was pressed. Any
changes made in the interim will, of course, result in a continu-
ation different from that produced if no interruption had taken
place. Thus, the BREAK key can be a useful debugging tool.

The no-input command CANCEL erases the intermediate results pro-
duced by the calculation interrupted by the latest BREAK. Thus,
if an execution has been interrupted, another initiated without
the use of GO and the BREAK key again pressed, two uses of CANCEL
are needed to erase all the intermediate results existing in the
workspace. It is good practice to use CANCEL after interrupting
any procedure which is not to be resumed using GO.

30

4. Additional Commands and Operations

4.1 Formatting

There is one command and several reserved LOGO names for position-
ing characters to be typed. They are particularly useful for
writing procedures to "draw" figures on the teletype, but have
other uses as well.

TYPE is a command which causes its one input to be typed. It
differs from PRINT only in that the typehead remains positioned
just after the character last typed -- there is no return to the
beginning of the next line.

Some special names are used for formatting with a PRINT or TYPE
command. They are:

/BLANK/

/LINE FEED/

/CARRIAGE RETURN/
/SKIP/

/FORM FEED/

a blank space. (the space bar cannot be used
for this because LOGO eliminates superfluous
spaces.)
teletype goes to next line without moving
horizontally.
return to beginning of current line.
a new line. (has the effect of both a
carriage return and a line feed.)
move paper to new page on teletypes which
have a form feed feature.

Then, to have the computer draw a diagonal line:

+TO DIAGONAL IN/
>10 TEST IS /N/ g
>20 IF TRUE STOP
>30 TYPE
>40 TYPE /BLANK/
>5_0 TYPE /LINE FEED/
>60 DIAGONAL (DIFF /N/ 1)
>END
DIAGONAL DEFINED
+-DIAGONAL 8

(Are we finished?)

(Move across one)
(Move down one)
(Repeat for IN/ -1)

-31-

4.2 Interactive Programs

All commands and operations used thus far must have their inputs
specified before they are executed. Each such input is a literal,
the thing of a name, or the output of some operation or procedure.
The LOGO operation REQUEST, however, causes execution to pause
until the user has typed a string of characters and a carriage
return. REQUEST then outputs th-',.s string. For example:

+PRINT REQUEST
HUMBUG (REQUEST prints an asterisk "*" to show

HUMBUG that user type-in is required*)
+PRINT SUM OF REQUEST AND REQUE3T
::3 (The leftmost REQUEST)
g2
5

4-

REQUEST makes possible the writing of programs which "interact"
with the user.

+TO COPYCAT
>10 PRINT "TELL ME SOMETHING."
>2_0 PRINT REQUEST
>30 COPYCAT
>END
COPYCAT DEFINED
+COPYCAT
TELL ME SOMETHING.
gWHO ARE YOU?
WHO ARE YOU?
TELL ME SOMETHING.
gWHY SHOULD I?
WHY SHOULD I?
TELL ME SOMETHING.
ARE YOU SOME KIND OF NUT
ARE YOU SOME KIND OF NUT
TELL ME SOMETHING.

.11

.11

.11

This asterisk is omitted when LOGO is not at the left-hand
edge of the paper. This is often the case when the last
typing resulted from a TYPE command.

32

The existence of an interactive capability makes the element of
time particularly interesting. There are several ways in which
LOGO makes provision for timing.

The operation ASK requires one input which must be a numbers
ASK is the same as REQUEST unless the user has not completed his
typing when.a number of seconds equal to the input has elapsed.
If this happens, ASK outputs the empty word and returns the
carriage to a new line.

+TO QUICKQUERY /QUESTION/
>10 PRINT /QUESTION/
>20 -MAKE "ANSWER" ASK 5
>30 TEST IS /ANSWER/ /EMPTY/
>40 IF TRUE PRINT "YOU WEREN'T FAST ENOUGH"
>50 OUTPUT /ANSWER/
>END
QUICKQUERY DEFINED
4-PRINT QUICKQUERY "WHO DISCOVERED FERMAT'S LAST THEOREM?

YOU HAVE 5 SECONDS TO ANSWER."
FERM (If as here, 5 seconds have elapsed before the user

presses CARRIAGE RETURN, LOGO resumes control)
YOU WEREN'T FAST ENOUGH

(The empty line is printed here by QUICKQUERY)
4-

The current date and time are made available to LOGO by the no-
input operations DATE and TIME:

÷PRINT DATE
6/13/71
÷PRINT TIME
11:05 PM

There is also an internal "clock" which is started when the user
enters LOGO. This clock keeps time in seconds:

+PRINT CLOCK
1806
+PRINT CLOCK
1811

RESET CLOCK sets the clock back to 0.

+PRINT CLOCK
1825
+RESET CLOCK
+PRINT CLOCK
5

-33-

The WAIT command makes LOGO pause a number of seconds equal to
its one input. It has no other effect. For auditory interaction,
there is the reserved name "BELL". PRINT /BELL/ rings the
teletype bell.

4.3 More Arithmetic

There are several numerical operations besides the basic four
operations and GREATER? and RANDOM, all discussed earlier. All
built-in numerical operations require integer inputs.

The operation QUOTIENT simply outputs the integer part of the
quotient of its two inputs. REMAINDER outputs the remainder of
the division yielding the quotient. DIVISION outputs a sentence
of two numbers -- the quotient of its two inputs and the
remainder.

4-PRINT QUOTIENT OF 34 AND -6
-5
+PRINT REMAINDER OF 34 AND -6
4

+PRINT DIVISION OF 34 AND -6
5 4

4-

MAXIMUM outputs the greater of its two inputs. MINIMUM outputs
the lesser of its two inputs.

4-TO ORDER2 /A/ /B/
>10 OUTPUT SENTENCE

MINIMUM /A/ /B/
MAXIMUM /A/ /B/

>END
ORDER2 DEFINED
{-PRINT ORDER2 3 -1
-1 3
4-

ZEROP is a one-input operation which outputs "TRUE" or "FALSE"
as the input is, or is not, numerically equal to zero. Thus,
ZEROP is not the same as IS 0.

+PRINT IS 0 00
FALSE
4-PRINT ZEROP 00
TRUE
4-

-314-

COUNT is not itself a numerical operation, but it has an ,integer
output, so it usually appears in conjunction with numerical
operations. COUNT has one input. Its output is the number of
letters in the input, if it is a LOGO word -- or the number of
words, ir it is a LOGO sentence. Thus:

+PRINT COUNT OF "ABC"
3

'-PRINT COUNT OF "THE CAT IN THE HAT"
5

+PRINT COUNT ""
0

4.4 Local and Global Names

The Command LOCAL

As we saw earlier, including a name on the title line of a
procedure meant that a special copy of the name would be created
each time the procedure was invoked. Each copy disappears when
the procedure which created it terminates. This feature is
especially useful when a procedure makes copies of itself
recursively, like the procedure REVERSE in the section dealing
with recursion. When a name does not appear in the title line of
the procedure in which it is used, no special copy of the name is
made. This is often a useful feature when we use such a global
name to transfer information from one procedure to another.
Sometimes, as in the example following, a "slight" variation of
REVERSE, it is a handicap.

+TO REVERSE /INPUT/
>10 TEST IS /INPUT/ /EMPTY/
>20 IF TRUE OUTPUT /EMPTY/
>3_0 MAKE "Y" FIRST OF /INPUT/
>40 OUTPUT WORD OF

REVERSE (BUTFIRST OF /INPUTi) AND /Y/
>END
REVERSE DEFINED
+PRINT REVERSE "HELLO"
00000

-35-

+TRACE REVERSE
+PRIV REVERSE OF "HELLO"
REVERSE'OF "HELLO"

REVERSE OF "ELLO"
REVERSE OF "LLO"
REVERSE OF "LO"
REVERSE OF "0"

REVERSE OF ""
REVERSE OUTPUTS ""

REVERSE OUTPUTS "0"
REVERSE OUTPUTS "00"

REVERSE OUTPUTS "000"
REVERSE OUTPUTS "0000"

REVERSE OUTPUTS "00000"
00000

(/Y/ .is now "H")
(/Y/ is now "E")
(/Y/ is now "L")
(/Y/ is now "L")
(/Y/ is now "0")
(Since input is /EMPTY/, /Y/ is
not changed)

(The result is PRINTed)

"Y" is made "0" in the fifth copy of REVERSE and never changes
thereafter. In the succeeding outputs, this /Y/ is what is
actually used. We really intended that a new copy of "Y" exist
for each calling of REVERSE. We can easily accomplish this by
the insertion of the instruction:

5 LOCAL "Y"

This results in "Y" being handled just as if it were on the
title line. Now REVERSE works.

+PRINT REVERSE "HELLO"
OLLEH

LOCAL is an unusual command in that it allows any number of
inputs to follow it. Each is taken as a name to be made "local"
to the procedure in which LOCAL appears.

4.5 Automatic Pro ram Generation - An Advanced Feature

DO is a LOGO command which results in the execution of its one
input. Thus, for example,

+DO "EDIT FOO"
(and we are editing FOO)

In the case above we could just as well have typed in EDIT FOO
directly, omitting the quotes and the DO. But, we could also
have written, in still larger form:

-36-

MAKE "PNAME" "FOO"
{-DO SENTENCE "EDIT" AND /PNAME/

Here we see the utility of DO. It enables exact specification
of parts of statements to be deferred, which otherwise would have
had to be inserted in literal form. Thus the command DO forms
the basis for general procedures which create or modify other
procedures.

Two operations are provided by LOGO to enable a procedure to find
the current contents of a procedure to be modified.

LINES is a one-input procedure. It outputs the sentence of the
line numbers of the procedure given as input.

TEXT is a two-input procedure -- it requires a procedure name
and a line number. It outputs the entire line, as a sentence.
If the line number 0 is given, TEXT outputs the title line of
the procedure indicated.

Thus, LINES can be used to find what lines exist and TEXT to go
through them one-by-one.

To illustrate these commands, consider the following procedure
for replacing /WORD/ by /SUBST/ in /SENTENCE/.

+TO REPLACE /WORD/ /SUBST/ /SENTENCE/
>10 TEST IS /SENTENCE/ /EMPTY/
>20 IF TRUE OUTPUT /EMPTY/
>3s TEST IS (FIRST /SENTENCE /) /WORD/
>40 IF TRUE OUTPUT SENTENCE

/SUBST/
REPLACE /WORD/ /SUBST/ (BUTFIRST /SENTENCE /})

>5J OUTPUT SENTENCE
FIRST /SENTENCE/
REPLACE /WORD/ /SUBST/ (BUTFIRST /SENTENCE/)

>END
REPLACE DEFINED
-PRINT REPLACE OF "CATS" "DOGS" "IT'S RAINING CATS AND DOGS"
ITS RAINING DOGS AND DOGS
-PRINT LINES OF "REPLACE"
10 20 30 40 50
+PRINT TEXT OF "REPLACE" AND 31ii
30 TEST IS (FIRST /SENTENCE /) /WORD/

4-

-37-

The following set of procedures, using the procedure REPLACE,
inserts /W2/ in place of /W1/ everywhere the latter appears in
a procedure /PNAME/. It exemplifies the use of DO, LINES, and
TEXT.

TO MODIFY /PNAME/ /W1/ /W2/
10 DO SENTENCE OF "EDIT" AND /PNAME/
20 CHANGE (LINES OF /PNAME/) /W1/ /W2/
30 DO "END"
END

TO CHANGE /LINES/ /W1/ /W2/
10 TEST IS /LINES/ /EMPTY/
20 IF TkUE STOP
30 DO SENTENCE SENTENCE SENTENCE

"REPLACE"
/W1/
/W2/
TEXT OF (FIRST /LINES/)

40 CHANGE (BUTFIRST OF /LINES/) /W1/ /w2/
END

The reserved name "CONTENTS" has as its thing, the sentence of
all procedure names (not title lines) in workspace. This makes
possible writing of procedures even more general than the above.
For further generality, /FILES/ is a sentence consisting of all
file names.

4.6 Other Ways to Terminate a Procedure

To stop execution of a procedure before the END command, the 0
input command STOP may be used. Its effect is exactly that of
END -- the procedure simply stops and control returns to whatever
called the procedure. STOP is often used to terminate one branch
resulting from a TEST. For example,

10 FACTOR /A/
10 TEST ZEROP /A/
20 IF TRUE PRINT "I CANNOT FACTOR ZERO"
30 IF TRUE STOP

II

The one-input command EXIT also terminates a procedure. Its
input is typed, then LOGO acts exactly as though an error has
been found, typing the location of the EXIT command and returning

-38--

control to the user. Thus, the example of a partial procedure
preceding could have been written

TO FACTOR /A/
10 TEST ZEROP /A/
20 IF TRUE EXIT "I CANNOT FACTOR ZERO"

II

I
I

and, after the procedure has been completed,

4-FACTOR 0
I CANNOT FACTOR ZERO
I WAS AT LINE 20 OF FACTOR

''4.e/ Miscellany

The Turtle

There is a set of operations and commands reserved for the
"turtle ", a LOGO-controlled robot.

The 0-input command-6 FRONT and BACK move the turtle'one unit in
the directions they name. RIGHT and LEFT rotate the turtle
clockwise and counterclockwise. HORN rings the turtle's bell.

The 0-input operations TOUCH LEFT and TOUCH RIGHT refer to the
turtle's touch sensors. TOUCH LEFT outputs TRUE if the left
sensor is again6t an obstacle, otherwise, it outputs FALSE.
TOUCH RIGHT queries the right touch sensor in the same way.

Other Commands and Operations

EMPTYP is a one-input operation which outputs.TRUE or FALSE as
its input is or is not the empty word. EMPTYP has exactly the
same effect as IS /EMPTY/.

IGNORE is a one-input command which has no effect. It is used
in the rare situations where an output which has.no further use

is generated. For example, the lines

SO PRINT "PRESS CARRIAGE RETURN TO CONTINUE"
60 IGNORE REQUEST

result in typing of the message given by line 50, followed by
typing of "n" and a pause in execution until the CARRIAGE RETURN
key is pressed,

-39-

GO TO LINE is a one-input command which is valid only in a pro-
cedure. It causes execution to pass to the line whose number is
given as its input.

Comments

A user may place remarks which he does not wish to be executed
anywhere within a procedure definition. The user indicates that
a string is not to be executed by placing semicolons around it.*
The only restriction on inserting comments in this way is that
they may not be placed within the quotes demarcating a literal
or within the pair of slashes delimiting a LOGO name. Remarks
correctly indicated have no effect on the execution of the pro-
cedure they lie within. They only appear when the procedure is
listed. For example,

TO DIAGONAL /N/; DRAWS A DIAGONAL LINER
10 TEST IS IN/ 0; END TEST
20 ; IF /N/ IS 0 WE ARE DONE; IF TRUE STOP
30 TYPE "n"
40 TYPE /BLANK/; MOVE ACROSS ONE SPACE
50 TYPE /LINE FEED/; NEXT LINE
60 ; REPEAT FOR /N/ -1; DIAGONAL (DIFF /N/ 1)
END

Comments may be placed after the entry name in a SAVE command,
again preceded by a semicolon. The comment is typed whenever
the entry name appears in a listing:

+SAVE GRANT ARITH; A GENERAL ARITHMETIC PACKAGE

/QUOTE/

If the user tries to print "DOG", complete with quotes, he gets
an error.

{-PRINT '"DOG""
(prints empty word)

DOG "" IS EXTRA

The special LOGO thing /QUOTE/ is used in such a situation to
indicate a quote mark which is not intended as the delimiter of
a literal. Thus:

+PRINT SENTENCE SENTENCE /QUOTE/ "DOG" /QUOTE/
"DOG"

WAcomment at the end of a line need not be terminated with
a semicolon.

5. Glossary and Index

Abbr. Description Page

ABBREVIATE ABT (2-input command) sets up second input
as the abbreviation of the first input 23

AND ("noise" word) used for clarity; valid
only between inputs of a procedure 6

AS ("noise" word) valid only in
abbreviating 23

ASK (1-input operation)outputs literal
type-in from teletype if completed in
input number of seconds, else the empty
word 33

BACK (0-input command) "turtle" effector,
moves turtle back 1 space 39

BOTH B (2-input operation) each input must be
TRUE or FALSE; outputs TRUE if both are
TRUE, otherwise FALSE 16

BUTFIRST BF (1-input operation) outputs all but
first character of an input word, or all
but first word of input sentence

BUTLAST BL (1-input operation) outputs all but last
character of input word, or all but last
word of input sentence 7

CANCEL (0-input command) eliminates one level
of break 30

CLOCK (0-input operation) outputs time given
by internal one-second clock 33

COUNT C (1-input operation) outputs number of
characters of an input word, or number
of words of an input sentence 35

DATE (p -input operation) outputs current date 33

DIFFERENCE RIFF (2-input operation) difference of first
and second input, which must be integers 8

DIVISION DIV (2-input operation) inputs must be
integers, Output is sentence of integer
quotient and remainder 34

DO (1-input command) executes its input as
a LOGO instruction line 36

EDIT (command followed by procedure name)
puts LOGO into define mode 21,23,28

EDIT LINE EDL (1-input command) used to edit line
indicated, valid only in define mode 22,23

Abbr. Description Page

EDIT TITLE EDT (0-input command) used to edit title,
valid only in define mode 23

EITHER EI (2-input operation) each input must be
TRUE or FALSE. Outputs TRUE if either
input is TRUE, otherwise FALSE 16

EMPTYP EP (1-input operation) outputs TRUE if
input is the empty word, otherwise
FALSE 39

END (0-input command) terminates a
procedure definition

ENTRIES (1 -input operation) outputs sentence of
second words of entry names in file
given as input 27

ERASE ER (command, followed by procedure name).
erases procedure from workspace 22

ERASE (1-input command) erases abbreviation
ABBREVIATION given as input 24

ERASE ALL (0-input command) completely erases
workspace, restores built-in abbrevia-
tions 25

ERASE ALL (0-input command) erases all user-
ABBREVIATIONS defined abbreviations in workspace 24,25

ERASE ALL (0-input command) erases all user-
NAMES defined names in workspace 25

ERASE ALL
PROCEDURES (0-input command) erases all procedures

from workspace 25

ERASE ALL (0-input command) removes trace flag
TRACES from all traced procedures in workspace 29

ERASE ENTRY EE (command, followed by entry name)
completely erases indicated entry 27

ERASE LINE ERL (1-input command) only valid in define
mode. Erases line whose number is
given as input 21

ERASE TRACE (command, followed by procedure name)
removes trace flag from indicated
procedure 29

EXIT (1-input command) types its input, the
line number and procedure name in which
it appears and terminates execution 38

FIRST F (1-input operation) outputs the first
character of an input word, or'the first
word of an input sentence 7

-42-

FRONT

Abbr. Description

(0-input command) "turtle" effector,

Page

moves turtle forward 1 space 39

GET (command, followed by entry name)
enters indicated entry into workspace 26

GO (0-input command) continues execution
from a BREAK key interrupt 30

GO TO LINE GTL (1-input command) only valid within a
procedure definition. Transfers execu-
tion to line whose number is given as
input 40

GOODBYE GB (0-input command) terminates LOGO
session 3,25

GREATERP GP (2-input operation) inputs must be
integers. Outputs TRUE if first input
is strictly greater than second, else
FALSE 16

HORN (0-input command) "turtle" effector,
rings turtle's bell 39

IF FALSE IFF (command followed by instruction)
executes instruction if truth flag is
FALSE, otherwise has no effect 16

IF TRUE IFT (command followed by instruction)
executes instruction if truth flag is
TRUE, otherwise has no effect 16

IGNORE (1-input command) has no effect 39

IS (2-input operation) outputs TRUE if
first input is identical to second,
otherwise FALSE 16

LAST L (1-input operation) outputs last
character of an input word, or last
word of input sentence 7

LEFT (0-input command) "turtle" effector,
rotates turtle counterclockwise 39

LINES (1-input operation) output is sentence
of all instruction line numbers of
procedure whose name is given as input 37

LIST (command followed by procedure name)
types definition of indicated procedure 22

LIST (command followed by entry name) types
ABBREVIATIONS all abbreviations in entry indicated 26

LIST ALL (0-input command) types entire user
workspace 25

43-

Abbr.

LIST ALL
ABBREVIATIONS

LIST ALL
FILES

LIST ALL
NAMES

LIST ALL

Description Page

(0-input command) types all abbrevia-
tions in user workspace 24

(0-input command) types all file names 27

(0-input command) types all names in
user workspace

(0-input command) types definitions

25,30

PROCEDURES of all procedures in user workspace 25
LIST CONTENTS LC (0-input command) types title lines of

all procedures in user workspace 25

LIST CONTENTS LC (command followed by entry name) types
title liles of all procedures in entry
indicated 27

LIST ENTRY LE (command followed by entry name) types
entire entry indicated 27

LIST FILE (command followed by file name) types
list of entries in file indicated 27

LIST LINE LL (1-input command) valid only in define
mode. Types line whose number is
given as input 22,23

LIST NAMES (command followed by entry name) types

LIST
PROCEDURES

all names in entry indicated

(command followed by entry name) types
all procedure definitions in entry
indicated

26

26

LIST TITLE (0-input command) valid only in define
mode. Types title line of procedure
being defined 22

LOCAL (command with any number of inputs)
only valid in a procedure. Makes all
names given as inputs local to the pro-
cedure containing this command 35

MAKE (2-input command) makes the first input
the name of the second input 12

MAXIMUM MAX (2-input operation) inputs -must be
integers. Outputs the greater of the
inputs 34

MINIMUM MIN (2-input operation) inputs must be
integers. Outputs the lesser of the
inputs 34

NUMBERP NP (1-input operation) outputs TRUE if
input is an integer, otherwise FALSE 15

Abbr. Description Page

OF ("noise" word) used for clarity; only
valid following procedure name

OUTPUT OP (1-input command) valid only in proce-
dure. Passes its input to procedure
(or operation or command) which called
current procedure

PRINT P (1-input command) types its input on
teletype and returns carriage to
beginning of next line

PRODUCT PROD (2-input operation) inputs must be
integers. Outputs their product

QUOTIENT QUO (2-input operation) inputs :dust bps

integers. Outputs their integer
quotient

RANDOM (0-input operation) outputs a random
digit

REMAINDER REM (2-input operation) irputs must be
integers. Outputs remainder of their
integer division

REQUEST RQ (0-input operation) Altputs literal
type-in from teletype

RESET CLOCK (0-input command) resets internal clock
to zero

6

11

3

6,8

8,34

8

34

32

33

RIGHT (p -input command` "turtle" effector,
rotates turtle clockwise 39

SAVE (command follosed by entry name) saves
user workspace as entry with name
indicated 26

SENTENCE S (2-input operation) outputs sentence
of its irputs 7

SENTENCEP SP (1-inpvt operation) outputs TRUE if
input is a sentence, otherwise FALSE IS

SIZE (1-input operation) outputs "size" of
er;.ry given as input 27

STOP (0-input command) valid only in proce-
dure. Terminates execution of its
procedure 38

SUM (2-input operation) inputs must be
integers. Outputs their sum 8

TEST T (1 -input command) input must be TRUE or
FALSE. Sets truth flag to its input 16

Abbr. Description Page

TEXT (2-input operation) outputs text in
procedure given by first input, with
line number given by second input 37

THING (1-input operation) outputs thing named
by the input 12

TIME (0-input operation) outputs current
time 33

TITLE (command followed by title line) valid
only in define mode. Changes title of
procedure being defined to that
following 21

TO (command followed by title line) enters
define mode of procedure name following

TOUCH LEFT (0-input operation) "turtle" feedback,
outputs TRUE if left sensor has touched
obstacle, resets touch flag, otherwise
outputs FALSE 39

TOUCH.RIGHT (0-input operation) "turtle" feedback,
outputs TRUE if right sensor has touched
obstacle, resets touch flag, otherwise
outputs FALSE 39

TRACE (command followed by procedure name)
sets trace flag for procedure indicated 18,29,3(

TYPE (1-input command) types its input 31

WAIT (1-input command) causes execution to
pause a number of seconds equal to its
input 34

WORD W (2-input operation) inputs must be words.
Outputs the word formed by concatenating
them

WORDP WP (1-input operation) outputs TRUE if input
is a word, otherwise FALSE 15

ZEROP ZP (1-input operation) outputs TRUE if
input is equal to zero, otherwise FALSE 34

4

There are also several abbreviations for parts of commands.
They are

ABB: ABBREVIATION
ABBS: ABBREVIATIONS
ER: ERASE
PRS: PROCEDURES

-46-

Reserved Names

Description Page

/EMPTY/ the empty thing 19

/CONTENTS/ a sentence of user-defined procedure names 38

/LINE FEED/ a line feed without carriage return when
typed 31

/CARRIAGE RETURN/ a carriage return without line feed when
typed 31

/FILES/ a sentence of file names 38

/FORM FEED/ moves paper to a new page when typed on
teletypes having form feed feature 31

/BLANK/ a blank space when typed 31

/BELL/ rings a bell when typed 34

/QUOTE/ a quote mark 40

/SKIP/ a new line.(carriage return and line feed)
when typed

Special Keys

RETURN gives line just typed by user to LOGO 3

RUB OUT erases line being typed 3,20

LINE FEED carriage goes to next line without
terminating current line 3

BREAK interrupts execution 3,30

deletes last character typed 20

uCTRL-W deletes. last word. typed 20

uCTRL-N only valid in EDIT LINE mode, Gets next
word of line being edited 22

uCTRL-R only valid in EDIT LINE mode. Gets rest
of line being edited 22

uCTRL-B same as /BLANK/

uCTRL-G same as /BELL/

uCTRL-L same as /FORM FEED/

uthis notation indicates that the CTRL key is pressed
simultaneously with indicated letter.

-47-

It

)

Special Characters

Description

used to delimit literals

used to delimit names

"noise" word, used for clarity

used to delimit comments

typed by LOGO

typed by LOGO

typed by LOGO
indicate line

typed by LOGO
user type-in

to indicate user control

to indicate define mode

at beginning of line to
has been "RUBbed OUT"

to indicate REQUEST needs

48-

Page

4

5,13

6,11

40

3

5,22

20

32

LOGO Reference Manua1

Addendum No. 1

Slash (/) has been replaced by colon er dots (:) as the delimiter
for LOGO names.

2, The command LOCAL now takes only a single input (instead ofan
arbitrary number as before).

The number sign (1/) embedded in a literal TYPEs and PRINTS as a
blank'space. Thus,

t11A5EIle" "Altii0B"
4-1-1ST_ALL'NAMFs.
A 1S "AttOW1
4PRINT :A:
A .13

The special actions :LINEFEED:, :BELL:, :CARRIAGE RETURN:',
:FORMED:, and ::SKIP are now also available as the zero- input
commands LINEFEED, BELL, RETURN, FORMFEED, and SKIP.

The multi -word commands IF TRUE, IF FALSE, GO TO LINE, RESET
CLOCK, and the multi -word operations TOUCH LEFT, and TOUCH RIGHT
have been changed to the single words IFTRUE, IFFALSE, GOTOLINE,
RESETCLOCK, TOUCELEFT, and TOUCHRIGHT.

A ono-input command, TYPEIN, has been added. TYPEIN "A" has the
same effect as MAKE "A" REQUEST.

4-TYPEIN "SAM"
n1 AM SAM
+PRINT :SAM:
1 AM SAM

The character > has been replaced by the character 0 to indicate
readiness in define mode.

-49-

LOGO Reference Manual

Addendum No, 2

1. The prefix arithmetic operations DIFFERENCE, PRODUCT,
QUOTIENT have been supplemented by their infix forms +, *, /.
> is now the infix form of GREATERP and both infix (<) and
prefix (LESSP) versions of the predicate strictly-less; -than
have also been implemented. EQUALP and the eqiiivd-lenITITITTx
are new two-input predicates which test numerical equality.
(EQUALP OP 0 AND 00 is "TRUE" whereas IS 0P 0 AND 00 is "FALSE".)

Expressions containing only prefix operations and commands are
parsed from left to right as before (see LOGO manual). Infix
operations have their usual meanings in expressions. For
example, 2 + 3 * 4 gives 14 and 3 1 + 2 gives "TRUE". (Using
a simple left-to-right parsing, this last expression. would
have been interpreted as (3 = 1) + 2, i.e., "FALSE" + 2 and
thus would have resulted in an error message.) Parsing is
straightforwardly described by giving different.precedence.
ranking to different classes of operators, as.in the following
table.

*/

all prefix operators

Thus, E and / have identical precedence which is higher than
the precedence of + and -.

Now we can easily state the general LOGO parsing rule. Parsing
is still strictly left-to -vight except for 'the difficult case
where there are two possible operators with which to associate
an input. This is the case where an input is preceded by any
(prefix or infix) operator and is followed by an infix operator.
Symbolically: Left-Op Input Right-Op. (For example in
PRINT 2 3 we want the input 2 to go with the operator +, not
with the operator PRINT.) The general rule it: the input goes
With the operator on its left (Left.. -Op) unles6 the precedence
of that operator is less than the precedence of the infix
operator on the right. The following examples show the use
of the rule.

+PRINT 2
5

+PRINT 4
TRUE
+PRINT 2
4

+ 3

11 3 t 6 x 2

+ 3 H 4 / 6

+PRINT BOTH 3 < 4 AND 3 > 4
arm-

50

Addendum No. 2

+PRINT WORD 1 AND 1 N WORD 2 AND 2
122
+PRINT BUTLAST 13 N 4
5

+PRINT 4 BUTLA_ ST 13
4

Parentheses can. still be used to enclose valid LOGO expressions
(see Pp. 6 and 11, LOGO Manual) . Now, however, they can change
the order of parsing.

+PRINT (BUTLAST 13) g 4

+PRINT (WORD_ 1 AND 1) N (WORD 2 AND 2)
242

Finally, a + or - which is not preceded by an input is taken
as a unary + or -.

+PRINT 1

-1

There are some difficulties, though,

+PRINT SUM -1 -1
1 INPUT MISSING FOR SUM

The second - was taken as binary resulting in PRINT SUM -2.
Our parsing rule was chosen to minimize such difficulties.
One should, when possible, avoid the use of mixed prefix and
infix expressions which are not transparent. When writing
mixed expressions,- the use of parentheses or noise words
should be encouraged to increase transparency. Thus, the
previous example could be correctly written as

+PRINT SUM -1 AND -1
-2

2. The one-input operation NOT outputs "TRUE" if the input is
"FALSE" and "FALSE" if the input is "TRUE". Any other input
gives an error message.

WORDS and SENTEUCES are operations which concatenate any
number of inputs to form a LOGO word or a L000 sentence.
These operations keep taking inputs until a right parenthesis
occurs or the line ends. Their built-in abbreviations are
WS and SS.

+PRINT SENTENCES "A" "B" "C" "D"
ABCD
+PRINT (WORDS 1 2 3 (WORDS 3 2 1

444

Addendum No. 2

. An additional form of conditional: IF THEN ELSE
has been :implemented. The IF command is followed by an
expression which must evaluate to "TRUE" or "FALSE". If it
is "TRUE", then the command following THEN is executed. If
it is "FALSE", the command following ELSE is executed. The
word THEN is a noise word which may be omitted. The ELSE
and subsequent command may also be omitted. In that case,
"FALSE" results in a null action.

I F BOTH 1 > 2 AND 2 < 1 THEN PRINT "HELP" ELSE PRINT "WHEW"
WHEW
4-IF 2+ 2= 4 PRINT SUM OF 1 AND 2
3

TO REVERSE :WORD:
10 IF EMPTYP :WORD: OUTPUT :EMPTY: ELSE OUTPUT WORD OF
(LAST :WORD:) (REVERSE BUTLAST :WORD:)

END

-52-

